CATEGORY-THEORETIC RECONSTRUCTION

OF RINGS AND SCHEMES

Томокі Үијі

RIMS, Kyoto University

July 25, 2022

ABSTRACT

I will explain an algorithm for reconstructing the underlying scheme of the objects of $Sch_{ullet /S}$, where

- S: a locally Noetherian normal scheme,
- \blacklozenge/S : a set of properties of S-schemes s.t.
 - $\blacklozenge \subset \{\mathrm{red}, \mathrm{qcpt}, \mathrm{qsep}, \mathrm{sep}\}$, and
- $\operatorname{Sch}_{{\mathbf{A}}/S}$: the full subcategory of $\operatorname{Sch}_{/S}$ determined by the objects $X \in \operatorname{Sch}_{{\mathbf{A}}/S}$ that satisfy every property of ${\mathbf{A}}/S$.

To explain this algorithm,

I will talk about a Ring version of this algorithm: $Alg_{R/\phi} \rightsquigarrow R$.

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - $4.2. \ {\rm Topologies}$
 - 4.3. Structure Sheaves

► 1. INTRODUCTION

- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - 4.2. Topologies
 - 4.3. Structure Sheaves

NOTATIONS

 $S, R \cdots$ a base scheme, a coefficient ring, resp.

 \blacklozenge/S , R/\blacklozenge

 \cdots sets of properties of S-schemes and R-algebras, resp.

 $\mathsf{Sch}_{\blacklozenge/S}, \mathsf{Alg}_{R/\diamondsuit}$

 \cdots full subcats $\operatorname{Sch}_{\bigstar/S} \subset \operatorname{Sch}_{/S}$ and $\operatorname{Alg}_{R/\bigstar} \subset \operatorname{Alg}_{R/}$ det'nd by \blacklozenge .

 $\times, \lim, \operatorname{colim}$

··· fiber prods, limits and colims in Sch, Alg.

 $\times^{\blacklozenge}, \lim^{\blacklozenge}, \operatorname{colim}^{\blacklozenge}, \otimes^{\blacklozenge}$

 \cdots fiber prods, limits, colims and tensor prods in Sch_{\diamond/S}, Alg_{R/\diamond}.

We shall mainly be concerned with the properties

$$\blacklozenge \subset \{\mathrm{red}, \mathrm{qcpt}, \mathrm{qsep}, \mathrm{sep}\} \,.$$

RESEARCH

Mochizuki 2004

 $\langle S = f.t./S, S:$ locally Noetherian, $Sch_{\langle S \rangle} \rightsquigarrow S$.

Mochizuki 2014

log scheme version of [Mzk04]

van Dobben de Bruyn 2019

 $\blacklozenge = \varnothing$, R and S: arbitrary, $\operatorname{Sch}_{/S} \rightsquigarrow S$, $\operatorname{Alg}_{R/} \rightsquigarrow R$.

Anabelian Geometry

 $\langle S = f\acute{e}t/S, S$: a variety over an "arithmetic" field, etc...

Remark. [vDdB19] \Rightarrow [Mzk04].

DEFINITIONS

DEFINITION. We say that a category C is of schematic type if it admits an equivalence of categories $C \xrightarrow{\sim} Sch_{\diamondsuit/S}$, where

- S is a locally Noetherian normal scheme, and
- $\blacklozenge \subset \{ red, qsep, qcpt, sep \}$ a set of properties.

DEFINITION. We write Sch_{rqqs} -type for the 2-groupoid of categories of schematic type, equivalences, and natural isomorphisms.

DEFINITION. Let C be a category and $c \in C$ an object.

- We shall write $C_{/c}$ for the slice category.
- We shall write $\mathcal{C}_{c/}$ for the coslice category.

$$\begin{array}{c} \textbf{MAIN THEOREM} \\ \hline \textbf{MAIN THEOREM} \\ \hline \textbf{The inclusion Sch_{rqqs}-type} \xrightarrow{\Psi} Cat admits a factorization \\ & \textbf{Sch_{rqqs}-type} \xrightarrow{\Psi} Cat_{/Sch} \xrightarrow{\text{forgetful}} Cat \\ \hline \textbf{such that for any locally Noetherian normal scheme } S and \\ \hline \textbf{set of properties} \blacklozenge \subset \{\text{red, qsep, qcpt, sep}\}, \\ \Psi(\text{Sch}_{\blacklozenge/S}) \text{ is isomorphic to the forgetful functor: Sch}_{\lor/S} \rightarrow \text{Sch.} \\ \end{array}$$

COROLLARY. $S, T \neq \emptyset$: locally Noetherian normal schemes. Then, $\operatorname{Sch}_{{\bigstar}/S} \cong \operatorname{Sch}_{{\Diamond}/T} \Rightarrow {}^{"}{\bigstar} = {\Diamond}^{"}$.

COROLLARY. S, T: locally Noetherian normal schemes. Then, the following functor is an equivalence:

$$\operatorname{Isom}(S,T) \xrightarrow{\sim} \operatorname{Isom}(\operatorname{Sch}_{{\bigstar}/T}, \operatorname{Sch}_{{\bigstar}/S})$$
$$f \mapsto f^* :\stackrel{\text{def}}{=} S \times_{f,T}^{{\bigstar}} (-).$$

IDEA OF PROOF

To prove the main theorem,

we need to construct a functor $\Psi:\mathsf{Sch}_{\mathrm{rqqs}}\operatorname{-type}\to\mathsf{Cat}_{/\operatorname{Sch}}.$

Hence, $\forall C \in \mathsf{Sch}_{rqqs}$ -type, we need to construct $\Psi(C) : C \to \mathsf{Sch}$. In particular, we need to construct a functor $\Psi(\mathsf{Sch}_{\blacklozenge/S}) : \mathsf{Sch}_{\blacklozenge/S} \to \mathsf{Sch}$ which is isomorphic to the forgetful functor.

To Do. For any object $X \in \operatorname{Sch}_{{\mathbf{4}}/{S}}$ and morphism $f \in \operatorname{Sch}_{{\mathbf{4}}/{S}}$, we need to construct a scheme $\tilde{X} \cong X$ and a morphism of schemes $\tilde{f} \cong f$, functorially, from the intrinsic structure of the abstract category $\operatorname{Sch}_{{\mathbf{4}}/{S}}$.

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - $4.2. \ {\rm Topologies}$
 - 4.3. Structure Sheaves

- 1. INTRODUCTION
- ▶ 2. RECONSTRUCTION OF RINGS from Categories of Rings
 - 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
 - 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - 4.2. Topologies
 - 4.3. Structure Sheaves

A THEOREM

To explain an example of a reconstruction algorithm, we introduce a proof of the folowing theorem:

THEOREM. [van Dobben de Bruyn] Let R, S be rings. Then $\operatorname{Isom}(R, S) \xrightarrow{\sim} \operatorname{Isom}(\operatorname{Alg}_{R/}, \operatorname{Alg}_{S/}),$ $f \mapsto f^* \stackrel{\text{def}}{=} S \otimes_{f,R} (-).$

To prove above theorem, we remember the following well-known result:

WELL KNOWN RESULT. [Beck] A: a ring, M: an A-mod. Then the square-zero extension $A \ltimes M$ admits an abelian group object structrure in $\operatorname{Alg}_{A/A} :\stackrel{\text{def}}{=} (\operatorname{Alg}_{A/})_{/A}$, moreover, $\operatorname{Mod}_A \xrightarrow{\sim} \operatorname{Ab}(\operatorname{Alg}_{A/A})$, $M \mapsto A \ltimes M$.

A THEOREM

REMARK. By considering the well-known isom $R \xrightarrow{\sim} End(id_{Mod_R})$, we obtain

$$\mathsf{Alg}_{R/} \cong \mathsf{Alg}_{S/} \ \Rightarrow \ R \cong S.$$

However, the operator $\operatorname{End}(\operatorname{id}_{\mathsf{Mod}_*})$ is not functorial wrt "*". Hence we can't conclude the theorem from only this observation.

LEMMA. Let $A \in \operatorname{Alg}_{R/}$ be an object, $A_1 = A \ltimes M_1$, $A_2 = A \ltimes M_2$, and $A \to B \xrightarrow{q} A$ be objects of $\operatorname{Ab}(\operatorname{Alg}_{A/A})$. Then $\operatorname{ker}(q) \cong M_1 \otimes_A M_2$ if and only if B is "closest" to $A_1 \otimes_A A_2$ among objects satisfying:

- *B* admits a morphism $B \to A_1 \otimes_A A_2$ in $Alg_{A/A}$ such that $A \xrightarrow{\sim} B \times_{A_1 \otimes_A A_2} (A_1 \oplus A_2)$.

A THEOREM

The above lemma conclude that for any category $\mathcal{C} \cong \operatorname{Alg}_{R/}$ and $X \in \mathcal{C}$, we can define category-theoretically a monoidal structure \otimes on $\operatorname{Ab}(\mathcal{C}_{X/X})$ such that $\operatorname{Ab}(\operatorname{Alg}_{A/A})^{\otimes} \cong \operatorname{Mod}_{A}^{\otimes}$.

Moreover, we can observe easily that for any $(A \to B) \in Alg_{R/}$, the functor $Ab(Alg_{A/A}) \to Ab(Alg_{B/B})$ induced by $B \otimes_A (-)$ coincides with $B \otimes_A (-)$, via $Mod_A \xrightarrow{\sim} Ab(Alg_{A/A})$.

We define $\Psi(\mathcal{C})(X) := \operatorname{End}(1)$, where **1** is the monoidal unit of $\operatorname{Ab}(\mathcal{C}_{X/X})^{\otimes}$. Then

THEOREM. The inclusion Alg-type
$$\hookrightarrow$$
 Cat admits a factorization
Alg-type $\xrightarrow{\Psi}$ Cat_{/Ring} $\xrightarrow{\text{forgetful}}$ Cat
such that for any ring $R, \Psi(R) \cong [\text{Alg}_{R/} \xrightarrow{\text{forgetful}} \text{Ring}].$

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - $4.2. \ {\rm Topologies}$
 - 4.3. Structure Sheaves

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- ▶ 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
 - 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - 4.2. Topologies
 - 4.3. Structure Sheaves

Next, we consider the folowing problem:

PROBLEM. For any reduced rings R, S and $\blacklozenge \subset \{ \text{red} \}$, is the following an equivalence?

 $\operatorname{Isom}(R,S) \xrightarrow{\sim} \operatorname{Isom}(\operatorname{Alg}_{R/\diamondsuit}, \operatorname{Alg}_{S/\diamondsuit}),$ $f \mapsto f^* \stackrel{\text{def}}{=} S \otimes_{f,R} (-).$

First, we note a difference between the present situation and this situation:

REMARK. Assume that red $\in \blacklozenge$. Then, $\forall A$: *R*-alg, $\forall M$: *A*-mod, $A \ltimes M \notin Alg_{R/\diamondsuit}$. Hence $\forall A \in Alg_{R/\diamondsuit}$, $Ab((Alg_{R/\diamondsuit})_{A/A}) = 0$.

From another perspective, the above conclude that the following corollary:

COROLLARY. $R, S \neq 0$: reduced, $\blacklozenge, \diamondsuit \subset \{\text{red}\}$. Then, $\operatorname{Alg}_{R/\blacklozenge} \cong \operatorname{Alg}_{S/\diamondsuit} \Rightarrow \blacklozenge = \diamondsuit$.

Next, we note a property of the tensor product (=push-out) in $Alg_{R/\bullet}$.

REMARK. Assume that $\operatorname{red} \in \blacklozenge$. Then a push-out of the diagram $[A_1 \leftarrow B \rightarrow A_2]$ in $\operatorname{Alg}_{R/\blacklozenge}$ is naturally isomorphic to $(A_1 \otimes_B A_2)/\sqrt{0}$. Hence, if $\operatorname{red} \in \blacklozenge$, then $A_1 \otimes_B^{\blacklozenge} A_2 \cong (A_1 \otimes_B A_2)/\sqrt{0}$.

In particular, the operation "push-out" in $Alg_{R/\diamondsuit}$ preserves surjectivity. Thus, we obtain the following corollary:

COROLLARY. Let $[f : A \to B] \in Alg_{R/\phi}$ be a morphism. Then f: surj. \iff the following is a push-out square in $Alg_{R/\phi}$:

Next, we reduce this problem to the case of the reconstruction problem of schemes.

DEFINITION. X: an *R*-scheme, $\mathcal{F} : \operatorname{Alg}_{R/\blacklozenge} \to \operatorname{Set}$ a functor.

- $h_X := \operatorname{Hom}_{\operatorname{Sch}_{/R}}(\operatorname{Spec}(-), X) : \operatorname{Alg}_{R/\diamondsuit} \to \operatorname{Set}.$
- For any ring A, $h_A :\stackrel{\text{def}}{:=} h_{\text{Spec}(A)}$.
- We shall say that \mathcal{F} is **represented by** X if $F \cong h_X$.

By the above characterization of surjective morphisms, we obtain:

COROLLARY. Let $A \in \operatorname{Alg}_{R/\diamond}$ be an object, $\mathcal{F} : \operatorname{Alg}_{R/\diamond} \to \operatorname{Set} a$ functor, and $i : \mathcal{F} \to h_A$ a morphism of functors. Then $\mathcal{F} \to h_A$ is represented by an open subscheme of $\operatorname{Spec}(A) \iff$ $\exists \operatorname{a} \operatorname{surj}: [A \to B] \in \operatorname{Alg}_{R/\diamond} \text{ s.t. } \mathcal{F} \times_{h_A} h_B = \emptyset$, and $\forall \mathcal{G} : \operatorname{Alg}_{R/\diamond} \to \operatorname{Set}, \forall (\mathcal{G} \to h_A), \mathcal{G} \times_{h_A} h_B = \emptyset \Rightarrow \exists ! (\mathcal{G} \to \mathcal{F})/h_A.$

Hence, the property that \mathcal{F} is a sheaf on $Alg_{R/\blacklozenge}$ with the Zariski topology can be characterized category-theoretically.

COROLLARY. *R*: a ring, $\mathcal{F} : \operatorname{Alg}_{R/\blacklozenge} \to \operatorname{Set} \operatorname{a} \operatorname{Zariski}$ sheaf. Then \mathcal{F} is represented ($\stackrel{\text{def}}{=}$: repr'd) by an *R*-scheme that satisfies $\blacklozenge \iff$ $\exists \{A_i\} \subset \operatorname{Alg}_{R/\blacklozenge}, \exists \{h_{A_i} \to \mathcal{F}\}_{i \in I} \text{ s.t.}, \forall A \in \operatorname{Alg}_{R/\diamondsuit}, \forall (h_A \to \mathcal{F}),$ (1) $\forall i \in I, h_{A_i} \times_{\mathcal{F}} h_A \to h_A$ is repr'd by an open subsch of $\operatorname{Spec}(A)$. (2) $\exists i \in I, h_{A_i} \times_{\mathcal{F}} h_A \neq \emptyset$ ($\{U_i\}$ is a "open covering of \mathcal{F} ").

::) \mathcal{F} is repr'd by a sch $\iff \mathcal{F}$ admits an open cov by repr'ble shvs. \Box

Thus, the category $Sch_{\langle Spec(R) \rangle}$ can be reconstructed from the intrinsic structure of the abstract category $Alg_{R/\langle \bullet \rangle}$.

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - $4.2. \ {\rm Topologies}$
 - 4.3. Structure Sheaves

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- ► 4. RECONSTRUCTION OF SCHEMES
 - 4.1. Underlying Sets
 - $4.2. \ {\rm Topologies}$
 - 4.3. Structure Sheaves

To prove the above theorem, we need to:

OUTLINE. For each object $X \in \text{Sch}_{\langle S \rangle}$, we give a categorytheoretic algorithm for reconstructing the underlying set |X|, the topology on |X|, and the structure sheaf \mathcal{O}_X .

FIBER PRODUCT

First, we verify a property of the fiber products in $Sch_{\phi/S}$.

LEMMA. $f: Y \to X, g: Z \to X$: morphisms in Sch $_{\diamond/S}$. Suppose that either f or g is quasi-compact. Then, the fiber product $Y \times_X^{\diamond} Z$ in Sch $_{\diamond/S}$ exists, and:

- If red $\notin \blacklozenge$, then $Y \times^{\blacklozenge}_X Z \cong Y \times_X Z$.
- If red $\in \blacklozenge$, then $Y \times^{\blacklozenge}_X Z \cong (Y \times_X Z)_{red}$.

(We omit a proof).

In particular, $Y \times_X Z$ and $Y \times^{\blacklozenge}_X Z$ have same underlying topological spaces.

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - $4.2. \ {\rm Topologies}$
 - 4.3. Structure Sheaves

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - ► 4.1. Underlying Sets
 - 4.2. Topologies
 - 4.3. Structure Sheaves

ONE POINTED SCHEMES

Next, we note the following:

OBSERVATION. A point $x \in X$ is determined by a morphism $f: Y \to X$ s.t. #(|Y|) = 1, and $\text{Im}(f) = \{x\}$.

Hence, the following are equivalent:

- giving a point of X.
- giving a certain equiv class of $f: Y \to X$ s.t. #(|Y|) = 1.

Thus, to reconstruct the underlying sets of the objects of $Sch_{\diamond/S}$, it suffices to characterize **one-pointed schemes** (i.e., schemes whose underlying sets are one point sets) category-theoretically.

ONE POINTED SCHEMES

By considering the above observation, we can give a catgrory-theoretic characterization of one-pointed objects as follows:

LEMMA. Let $X \in \mathsf{Sch}_{\blacklozenge/S}$. Then $\#(|X|) > 1 \iff \exists Y, Z \neq \emptyset$, $\exists Y \to X, Z \to X$ s.t. $Y \times^{\blacklozenge}_X Z = \emptyset$

 \therefore) $[\Rightarrow] \exists x_1, x_2 \in X \text{ s.t. } x_1 \neq x_2 \Rightarrow \operatorname{Spec}(k(x_1)) \times^{\bigstar}_X \operatorname{Spec}(k(x_2)) = \emptyset.$ $[\Leftarrow]$ If X satisfies the condition, then $y \in Y$ and $z \in Z$ determine two distinct points of X. \Box

Now, we can obtain immediately the following:

COROLLARY. Let $C \in \operatorname{Sch}_{rqqs}$ -type be a category of scheme type and $X \in C$ an object. Assume that $\exists F : C \xrightarrow{\sim} \operatorname{Sch}_{{\bigstar}/S} \text{ s.t. } \#(|F(X)|) = 1.$ Then $\forall F : C \to \operatorname{Sch}_{{\bigstar}/S}, \#(|F(X)|) = 1.$

UNDERLYING SETS

Let $C \in \mathsf{Sch}_{rqqs}$ -type be a category of schematic type and $X \in C$. We call that X is **1-ptd** if $\exists F : C \xrightarrow{\sim} \mathsf{Sch}_{\blacklozenge/S}, \#(|F(X)|) = 1$.

REMARK. By the above corollary, this definition does not depend on the choice of F.

DEFINITION. Let C be a categiry of schematic type and $X \in C$. We define

$$\operatorname{Pt}_{\mathcal{C}}(X) :\stackrel{\text{def}}{=} \{ (p_Z : Z \to X) \in \mathcal{C} \mid Z: \operatorname{1ptd} \} / \sim,$$

where $(p_Z : Z \to X) \sim (p_{Z'} : Z' \to X) : \iff Z \times_{p_Z, X, p_{Z'}}^{\mathcal{C}} Z' \neq \emptyset$. By compositing a morphism $f : X \to Y$ in \mathcal{C} , we obtain a map $\operatorname{Pt}_{\mathcal{C}}(f) : \operatorname{Pt}_{\mathcal{C}}(X) \to \operatorname{Pt}_{\mathcal{C}}(Y)$.

Thus, we obtain a functor $\operatorname{Pt}_{\mathcal{C}}:\mathcal{C}\to\mathsf{Set}.$ Moreover,

UNDERLYING SETS

RECONSTRUCTION OF UNDERLYING SETS. The assignment $\Psi_{Set} : \mathcal{C} \mapsto \operatorname{Pt}_{\mathcal{C}}$ determines a factorization $\operatorname{Sch}_{rqqs}$ -type $\xrightarrow{\Psi_{Set}} \operatorname{Cat}_{/Set} \xrightarrow{\operatorname{forgetful}} \operatorname{Cat}$ of the inclusion $\operatorname{Sch}_{rqqs}$ -type \hookrightarrow Cat such that for any scheme S and $\blacklozenge \subset \{\operatorname{red}, \operatorname{qcpt}, \operatorname{qsep}, \operatorname{sep}\},$ $\Psi_{Set}(\operatorname{Sch}_{\blacklozenge/S}) : \operatorname{Sch}_{\diamondsuit/S} \to \operatorname{Set}$ is isomorphic to $\operatorname{Sch}_{\diamondsuit/S} \xrightarrow{\operatorname{forgetful}} \operatorname{Set}.$ In particular,

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - $4.2. \ {\rm Topologies}$
 - 4.3. Structure Sheaves

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - ► 4.2. Topologies
 - 4.3. Structure Sheaves

CLOSED IMMERSIONS

To reconstruct the underlying topological spaces, we use a property of regular monomorphisms in $Sch_{4/S}$.

DEFINITION. Let C be a category and $(f : X \to Y) \in C$. We call f is a **regular monomorphism** if $\exists g, h : Y \to Z$, s.t. f is the equalizer of (g, h).

LEMMA. Let *S* be a qsep scheme and $f \in \mathsf{Sch}_{\phi/S}$ a morphism. If *f* is a regular monomorphism in $\mathsf{Sch}_{\phi/S}$, then *f*: immersion. \therefore) If *f* is a reg. mono., then *f* is isomorphic to the base-change of the diagonal of some $g \in \mathsf{Sch}_{\phi/S}$ (details omitted). \Box

A CHARACTERIZATION OF REDUCED SCHEMES. Let *S*: qsep. $X \in \mathsf{Sch}_{\blacklozenge/S}$ is red. $\iff [f: Y \to X: \text{surj. reg. mono.} \Rightarrow f: \text{isom.}]$ \therefore) a surj. reg. mono. is a surj. closed immersion. \Box

CLOSED IMMERSIONS

Closed immersions may be characterized as follows:

A CHARACTERIZATION OF CLOSED IMMERSIONS. [vDdB19] S: q.s., $(f : X \to Y) \in Sch_{\bullet/S}$. Then f is a closed immersion \iff

- f is a regular monomorphism.
- $\forall (T \to Y)$, the base-change $X_{\blacklozenge,T} = X \times_Y^{\blacklozenge} T$ exists in $\mathsf{Sch}_{\blacklozenge/S}$.
- $\forall (T \to Y), \forall t \in T$: closed pts. s.t. $t \notin \text{Im}(f_{\blacklozenge,T} : X_{\diamondsuit,T} \to T), X_{\diamondsuit,T} \coprod \text{Spec}(k(t)) \to T$ is a regular monomorphism.

(We omit a proof).

Hence to give a category-theoretic characterization of closed imms., it suffices to characterize the **closed points** of each objects. In particular, it suffices to characterize the specializaton-generization relation $x_1 \rightsquigarrow x_2$.

STRONGLY LOCAL

To characterize the relation $x_1 \rightsquigarrow x_2$, we define:

DEFINITION. S: qsep, $X \in \mathsf{Sch}_{\blacklozenge/S}$, and $x_1, x_2 \in X$. (X, x_1, x_2) is strongly local in $\mathsf{Sch}_{\diamondsuit/S}$:

- X is connected.
- $\forall (f: Z \to X)$: reg. mono., if $x_1, x_2 \in \text{Im}(f)$, then f: isom.
- $\operatorname{Spec}(k(x_1)) \coprod \operatorname{Spec}(k(x_2)) \to X$ is an epimorphism.
- $\operatorname{Spec}(k(x_1)) \to X$ is a regular monomorphism.
- $\forall (f: Z \to X)$: reg. mono., if $x_1 \notin \text{Im}(f)$ and $Z \neq \emptyset$, then $Z \coprod \text{Spec}(k(x_1)) \to X$ is **not** a regular monomorphism.

REMARK. The property that (X, x_1, x_2) is strongly local is defined category-theoretically from the data (Sch $_{4/S}$, X, x_1, x_2).

STRONGLY LOCAL

Properties of strongly local objects which is used to characterize the relation \rightsquigarrow are followings:

PROPERTIES OF STRONGLY LOCAL OBJECTS.

Let S be a grep scheme, $X \in \mathsf{Sch}_{\blacklozenge/S}$, and $x_1, x_2 \in X$.

If (X, x_1, x_2) : strongly local in $\mathsf{Sch}_{\blacklozenge/S}$, then

(1) $X \cong$ Spec(a local domain)

(2) One of x_1, x_2 is the closed pt., and the other is the generic pt.

In particular, $x_1 \rightsquigarrow x_2$ or $x_2 \rightsquigarrow x_1$.

(We omit a proof)

Let $V := \overset{\text{def}}{=} \operatorname{Spec}(\text{a val. ring}), v \in V$: closed pt., $\eta \in V$: generic pt. Then, EXAMPLE. (V, v, η) : strongly local. (We omit a proof)

Relation " $x_1 \rightsquigarrow x_2$ "

 $S: q.s., X \in \mathsf{Sch}_{\blacklozenge/S}, x_1, x_2 \in X.$

A Characterization of " $x_1 \rightsquigarrow x_2$ or $x_2 \rightsquigarrow x_1$ ".

 $\tilde{x}_1 \rightsquigarrow x_2 \text{ or } x_2 \rightsquigarrow x_1" \iff$

 $\exists Z\in \mathrm{Sch}_{\bigstar/S}, \exists z_1,z_2\in Z, \exists (f:Z\rightarrow X)\in \mathrm{Sch}_{\bigstar/S}\text{, s.t.,}$

 (Z, z_1, z_2) : str. loc., and $\{f(z_1), f(z_2)\} = \{x_1, x_2\}.$

 \therefore) [\Rightarrow] Take a valuation ring which dominates $\mathcal{O}_{X,x_1}/\mathfrak{m}_{X,x_2}$. [\Leftarrow] follows from the previous properties. \Box

By using the above characterization, we can characterize category-theoretically of the relation $x_1 \rightsquigarrow x_2$ (details omitted).

COROLLARY. We conclude the followings:

- Closed immersions may be characterized cat.-theoretically.
- Underlying top. may be reconstructed cat.-theoretically.

UNDERLYING TOP.

Similarly to the case of Set, we conclude:

RECONSTRUCTION OF UNDERLYING TOPS. There exists a factorization

 $\begin{array}{c} \operatorname{Sch}_{\operatorname{rqqs}}\operatorname{-type} \xrightarrow{\Psi_{\operatorname{Top}}} \operatorname{Cat}_{/\operatorname{Top}} \xrightarrow{\operatorname{forget}} \operatorname{Cat} \\ \operatorname{of the inclusion} \operatorname{Sch}_{\operatorname{rqqs}}\operatorname{-type} \hookrightarrow \operatorname{Cat} \operatorname{such that} \\ \operatorname{for any scheme} S \operatorname{and} \blacklozenge \subset \{\operatorname{red}, \operatorname{qcpt}, \operatorname{qsep}, \operatorname{sep}\}, \\ \Psi_{\operatorname{Top}}(\operatorname{Sch}_{\blacklozenge/S}) : \operatorname{Sch}_{\blacklozenge/S} \to \operatorname{Top} \operatorname{is isomorphic to} \operatorname{Sch}_{\diamondsuit/S} \xrightarrow{\operatorname{forget}} \operatorname{Top}. \\ \operatorname{Thus, in particular,} \forall F : \operatorname{Sch}_{\diamondsuit/S} \xrightarrow{\sim} \operatorname{Sch}_{\diamondsuit/T}, U_{\diamondsuit/S}^{\operatorname{Top}} \cong U_{\diamondsuit/T}^{\operatorname{Top}} \circ F. \end{array}$

COROLLARY. Topological properties of schemes (or morphisms) may be characterized cat.-theoretically (ex: q.s., q.c., sep., irred., local (\cong Spec(local ring)), open imm., univ. closed, etc.).

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - $4.2. \ {\rm Topologies}$
 - 4.3. Structure Sheaves

- 1. INTRODUCTION
- 2. RECONSTRUCTION OF RINGS from Categories of Rings
- 3. RECONSTRUCTION OF RINGS from Categories of Reduced Rings
- 4. Reconstruction of Schemes
 - 4.1. Underlying Sets
 - 4.2. Topologies
 - ► 4.3. Structure Sheaves

AN OBSERVATION

To reconstruct the structure sheaf of $X \in \mathsf{Sch}_{\blacklozenge/S}$, it suffices to characterize the ring scheme $\mathbb{A}^1_X \to X$ category-theoretically. Since \mathbb{A}^1 is of finite presentation over the base scheme, we wont to give a cat.-theoretic characterization of morphisms of finite presentation

AN IDEA. of f.p./S = a ``compact object" in Sch^{op}_{/S}

More precisely,

A CHARACTERIZATION. $X \to S$ is of finite presentation $\iff \forall (V_{\lambda}, f_{\lambda\mu})_{\lambda \in \Lambda}$: diagram in Sch_{/S} s.t. Λ : cofiltered, V_{λ} : affine, the following natural map is surjective:

 $\varphi: \operatornamewithlimits{colim}_{\lambda \in \Lambda^{\operatorname{op}}} \operatorname{Hom}_{\mathsf{Sch}_{/S}}(V_{\lambda}, X) \twoheadrightarrow \operatorname{Hom}_{\mathsf{Sch}_{/S}}(\varinjlim_{\lambda \in \Lambda}^{\bullet} V_{\lambda}, X).$

Note that we don't have a characterization of affine schemes yet.

ESSENTIALLY OF F.P.

By consulting to the previous characterization, we will give a characterization of morphisms that is locally of finite presentation.

S: locally Noetherian, $(f: X \to S) \in \mathsf{Sch}_{\blacklozenge/S}, x \in X$.

LEMMA. $f_x^{\#} : \mathcal{O}_{S,f(x)} \to \mathcal{O}_{X,x}$: essentially of finite presentation $\iff \forall (V_{\lambda}, f_{\lambda\mu})_{\lambda \in \Lambda}$: diagram in Sch $_{\bullet/S}$ s.t. Λ : cofiltered, V_{λ} : local, $f_{\lambda\mu}$ (closed pt.) = f(x), the following natural map is surjective :

 $\operatornamewithlimits{colim}_{\lambda \in \Lambda^{\operatorname{op}}} \operatorname{Hom}_{\mathsf{Sch}_{\bullet/S}}(V_{\lambda}, X) \twoheadrightarrow \operatorname{Hom}_{\mathsf{Sch}_{\bullet/S}}(\varinjlim_{\lambda \in \Lambda}^{\bullet} V_{\lambda}, X).$

 \therefore) It can be proved by a same method of the proof of the previous characterization (details omitted). \Box

REMARK. I think that if S is not stalkwise Noetherian, then there exists a counterexample of the above Lemma.

LOCALLY OF F.P.

S: locally Noetherian, $(f : X \to S) \in \mathsf{Sch}_{\bigstar/S}$. LEMMA. f is locally of finite presentation \iff

-
$$\forall x \in X$$
, $f_x^{\#} : \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$: essentially of f.p.

- $\forall (Z \rightarrow Y), \forall z \in Z$, the following natural map is bijective :

 $\operatornamewithlimits{colim}_{W \in I_Z(z)^{\operatorname{op}}} \operatorname{Hom}_{\mathsf{Sch}_{{\bigstar}/Y}}(W,X) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{Sch}_{{\bigstar}/Y}}(\varinjlim_{W \in I_Z(z)} W,X),$

where $I_Z(z) := \{i_W : W \to Z \mid i_W: \text{ open imm., } z \in \text{Im}(i_W)\}.$

 \because) It can be proved by a same method of the proof of the previous characterization (details omitted). $\hfill\square$

Let S be a locally Noetherian scheme. For any $X \in Sch_{\phi/S}$, |X| has been reconstructed cat.-theoretically, and, moreover:

LIST OF CATEGORY-THEORETIC PROPERTIES.

The following properties have been characterized cat.-theoretically:

- red., irred., integral, q.c., \cong Spec(local ring), \cong Spec(field).
- q.c., q.s., sep., imm., closed imm., open imm., loc. of f.p., f.p., f.p. + proper (= sep.+ f.p.+ univ. closed).

The following properties have not given yet cat.-theoretic characterizations:

flat, smooth, étale, unramified, etc.

AN OBSERVATION

To reconstruct the structure sheaf of $X \in \mathsf{Sch}_{\Phi/S}$, it suffices to characterize the ring scheme $\mathbb{A}^1_S \to S$ cat.-theoretically.

Since $\mathbb{A}^1_S = \mathbb{P}^1_S \setminus \{\infty\}$, it suffices to characterize $\mathbb{P}^1_S \to S$ category-theoretically.

What is Needed.

Giving a category-theoretic characterizaion of $\mathbb{P}^1_S \in \mathsf{Sch}_{\blacklozenge/S}$

To do this, we give a category-theoretic characterization of \mathbb{P}^1_k .

PROJECTIVE LINE

First, we note that:

 \int - proper over $\operatorname{Spec}(k)$

$$\mathbb{P}^1_k \iff \left\{ \text{- the residue field of the generic pt.} \cong k(t) \right\}$$

- "Closest" to $\operatorname{Spec}(k(t))$

Hence, to characterize \mathbb{P}^1_k , it suffices to characterize $\operatorname{Spec}(k(t))$.

Idea: Lüroth's theorem.

LEMMA.
$$[f: Y \to \operatorname{Spec}(k)] \cong [\operatorname{Spec}(k(t)) \to \operatorname{Spec}(k)] \iff$$

- $\exists K : \mathsf{field} , Y \cong \operatorname{Spec}(K)$
- f: not f.p. ($\Leftrightarrow K/k$: not a finite extension)
- $k \subsetneq \forall L \subset K$, \exists isom. $K \cong L$ over k (Lüroth's theorem).

Thus, we obtain a category-theoretic characterization of \mathbb{P}^1_k .

AN OBSERVATION

 $\mathbb{A}^1 = \mathbb{P}^1 \setminus \{\infty\}$ has a ring scheme structure:

OBSERVATION. 1-dim ring scheme $= \mathbb{A}^1$.

Indeed, we can prove the following:

LEMMA **.** $V := \text{Spec}(\text{DVR}), f : X \to V$: a flat ring scheme/V. Then f is isomorphic to the projection $\mathbb{A}^1_V \to V$ if

- The special fiber of f is connected and 1-dim.
- The generic fiber of f is \mathbb{A}^1_{η} , where $\eta \in V$ is the generic point.

::) This can be proved by a same method of the proof of the well-known fact of the theory of Néron models that $\mathbb{G}_{m,V}$ is an absolute minimal model. \Box

REMARK. Without connectedness of the special fiber, there is a counterexample: $\operatorname{Spec}(R[x,(x^{p^2}-x^p)/\pi]).$

CHARACTERIZATION OF \mathbb{P}^1_S

- S: locally Noetherian **normal**, $\Diamond = \blacklozenge \cup \{ \text{red} \}$,
- $f: X \to S$ a morphism in $\mathsf{Sch}_{\blacklozenge/S}$. Then
- f is isomorphic to the projection $\mathbb{P}^1_S \to S \iff f$ satisfies:
- (1) f is proper.

(2)
$$\forall s \in S, X \times^{\blacklozenge}_{S} k(s) (= f^{-1}(s)_{\mathrm{red}}) \cong \mathbb{P}^{1}_{k(s)}.$$

(3) $\forall \text{generic pt. } \eta \in S, X \times^{\blacklozenge}_{S} k(\eta) (= f^{-1}(\eta)) \cong \mathbb{P}^{1}_{k(\eta)}.$

(4)
$$\exists s_0, s_1, s_\infty$$
: sections of f s.t. $s_i \cap s_j = \emptyset, (i \neq j)$.

(5) $\forall i = 0, 1, \infty, \exists$ a ring structure on $X \setminus s_i$ over S in $Sch_{\Diamond/S}$ s.t. s_j : add. unit, s_k : mult. unit, and $\{i, j, k\} = \{0, 1, \infty\}$.

(6)
$$\forall (g: Y \to S) \in \mathsf{Sch}_{\blacklozenge/S} \text{ and } \forall (t_0, t_1, t_\infty): \text{ sections of } g,$$

if $(g; t_0, t_1, t_\infty)$ satisfy (1),...,(5), then $\exists !h: X \to Y:$ closed imm.
s.t. $f = g \circ h, h \circ s_i = t_i, \forall i \in \{0, 1, \infty\}.$ (universality)

Proof

If \mathbb{P}^1_S satisfies (6), then by the uniqueness of (6), " \Leftarrow ": ok. Hence, it suffices to prove " \Rightarrow " (i.e., \mathbb{P}^1_S satisfies (6)).

Let $Y \in \mathsf{Sch}_{\blacklozenge/S}$ be an object that satisfies (1),...,(5). We define

$$\begin{split} C: \mathsf{Sch}_{/S}^{\mathrm{op}} &\to \mathsf{Set}, \\ (T \to S) &\mapsto \left\{ \left. i: \mathbb{P}_T^1 \to Y_T \right| \left. \begin{array}{l} i: \text{closed imm., s.t.,} \\ 0, 1, \infty \mapsto t_0, t_1, t_\infty \end{array} \right\} \end{split}$$

Then we obtain immediately that:

- C is an algebraic space over S locally of finite type
- by (2), each fiber of $C \rightarrow S$ is a 1-pt. set.
- by (3), $C \rightarrow S$ is birational.

ASSERTION. The cardinality of C(S) is one.

PROOF

To prove that #(C(S)) = 1, it suffices to prove that the composite $C_{\text{red}} \hookrightarrow C \to S$ is an isomorphism.

Let $W :\stackrel{\text{def}}{=} \operatorname{Spec}(\mathsf{DVR}) \to S$ be an morphism (note that $W \in \mathsf{Sch}_{\blacklozenge/S}$). Then $(Y_W)_{\mathrm{red}} \setminus t_{i,W}$ is a flat ring scheme /W. By Lemma \blacklozenge , we conclude that

 $(Y_W)_{\mathrm{red}} \setminus t_{i,W} \cong \mathbb{A}^1_W$. In particular, #(C(W)) = 1.

By the valuative criterion, $C \to S$ is proper. Since $C \to S$ is bijective, $C \to S$ is finite. In particular, C is a **scheme**.

Since $C \to S$ is birational, and S is normal, $C_{\text{red}} \xrightarrow{\sim} S$. This completes the proof of the "Characterization of \mathbb{P}^1_S ". \Box

CONCLUSION

Similarly to the case of Set and Top, we conclude:

 $\begin{array}{l} \begin{array}{l} \text{Reconstruction of Underlying Schemes.} \\ \text{There exists a factorization} \\ & \text{Sch}_{rqqs} \text{-type} \xrightarrow{\Psi_{Sch}} \mathsf{Cat}_{/\,Sch} \xrightarrow{\text{forgetful}} \mathsf{Cat} \\ \text{of the inclusion Sch}_{rqqs} \text{-type} \hookrightarrow \mathsf{Cat} \text{ such that} \\ \text{for any locally Noetherian normal } S \text{ and } \blacklozenge \subset \{\text{red}, \text{qcpt}, \text{qsep}, \text{sep}\}, \\ \Psi_{Sch}(\mathsf{Sch}_{\blacklozenge/S}) : \mathsf{Sch}_{\diamondsuit/S} \to \mathsf{Sch} \text{ is isom to Sch}_{\diamondsuit/S} \xrightarrow{\text{forgetful}} \mathsf{Sch}. \\ \end{array}$ Thus, in particular, $\forall F : \mathsf{Sch}_{\diamondsuit/S} \xrightarrow{\sim} \mathsf{Sch}_{\diamondsuit/T}, U_{\diamondsuit/S}^{\mathsf{Sch}} \cong U_{\diamondsuit/T}^{\mathsf{Sch}} \circ F. \end{array}$

Moreover, for any locally Noetherian normal schemes S, T, $\operatorname{Isom}(S,T) \xrightarrow{\sim} \operatorname{Isom}(\operatorname{Sch}_{{\bigstar}/T}, \operatorname{Sch}_{{\bigstar}/S}).$

RELATED WORKS

I also confirmed the following reconstruction results:

- $\blacklozenge \subset \{$ finite, proper $\}$ and S: Noetherian
- - {ft, red, qcpt,qsep,sep} and S: locally Noetherian normal, where "ft" means "of finite type".
- The log-scheme version of the above reconstruction problem.

Since we may consider many properties of schemes, there are many category-theoretic reconstruction problems.

THANK YOU FOR YOUR ATTENTION

CONTACT: yujitomo@gmail.com WEBSITE: yuji-tomo.web.app

