Koszulity in Combinatorial Commutative Algebra

Winter School on Koszul Algebra and Koszul Duality

Ryota Okazaki (Fukuoka University of Education) Feb. 20th, 2022

Osaka City University

References

K. Yanagawa, Derived category of squarefree modules and local cohomology with monomial ideal support, J. Math. Soc. Japan **56** (2004), 289–308.

Acknowledgements

I am very grateful to the participants pointing out typos and mistakes in my talk, especially K. Iima, H. Minamoto, and O. Iyama.

$$n \in \mathbb{Z}_+ := \{k \in \mathbb{Z} \mid k > 0\}. \ [n] := \{1, 2, \dots, n\}.$$

• An (abstract) simplicial complex on [n] is $\Delta \subseteq 2^{[n]}$ s.t.

$$F \subseteq G \subseteq [n], \ G \in \Delta \implies F \in \Delta.$$

പ

 For a simpl. cpx Δ, we can construct a corresponding geometric simpl. cpx |Δ|, called the geometric realization.

- S := k[x₁,...,x_n] = a polynomial ring over a field k, considered as a Zⁿ-graded algebra with deg x_i = e_i := (0,...,0,1,0,...,0).
- For $F \subseteq [n]$,

$$x_F := \begin{cases} \prod_{i \in F} x_i & F \neq \emptyset, \\ 1 & F = \emptyset, \end{cases}$$

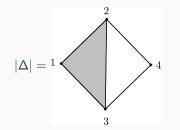
and hence deg $x_F = e_F := \sum_{i \in F} e_i$. Note that $F \subseteq G$ iff $x_F \mid x_G$ for $F, G \in 2^{[n]}$.

Definition

The (\mathbb{Z}^n -graded) ideal of S

$$\begin{split} I_{\Delta} &:= (x_F \mid F \in 2^{[n]} \setminus \Delta) \\ &= (x_F \mid F \text{ is a min. element of } 2^{[n]} \setminus \Delta) \end{split}$$

and (\mathbb{Z}^n -graded k-algebra) $k[\Delta] := S/I_\Delta$ are called the Stanley-Reisner ideal and the Stanley-Reisner ring.



The minimal non-faces are $\{1, 4\}$ and $\{2, 3, 4\}$.

$$I_{\Delta} = (x_1 x_4, x_2 x_3 x_4),$$

$$k[\Delta] = k[x_1, x_2, x_3, x_4]/(x_1 x_4, x_2 x_3 x_4).$$

- $\{I_{\Delta} \mid \Delta \text{ is a simpl. cpx. on } \{n\}\} = \begin{cases} \text{the ideals generated by} \\ \text{some } x_F \text{'s with } F \subseteq [n] \end{cases}$.
- k[Δ] is designed to satisfy k[Δ]_F := k[Δ]_{e_F} ≠ 0 iff F ∈ Δ, for all F ⊆ [n]. Moreover as Zⁿ-graded k-vector spaces,

$$k[\Delta] = \bigoplus_{F \in \Delta} k[x_i \mid i \in F] x_F,$$

and each $k[x_i | i \in F]x_F$ is $k[x_i | i \in F]$ -free.

Why we do a study on $k[\Delta]$

- (1) Applications to enumeration of the number of the faces of $|\Delta|$ (e.g. Upper Bound Theorem and g-theorem).
- (2) Interesting interaction among algebraic properties of k[Δ], combinatorial ones of Δ, and geometric ones of |Δ|.
- (3) A remarkable aspect of k[Δ] in view of homological algebra; e.g. a connection to Koszul duality (or BGG correspondence), detected by K. Yanagawa.

References for (1) and (2):

- W. Bruns and J. Herzog, Cohen–Macaulay rings, 2nd ed., Cambridge Univ. Press, 1998.
- J. Herzog and T. Hibi, Monomial Ideals, Springer, 2011.
- E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2005.
- R. P. Stanley, Combinatorics and Commutative Algebra, Birkhäuser, 1996.

Definition

An Alexander dual of Δ is a simplicial complex

$$\Delta^{\vee} := \{F \subseteq [n] \mid F^c := [n] \setminus F \notin \Delta\}$$
$$= 2^{[n]} \setminus \{F \subseteq [n] \mid F^c \in \Delta\}$$

Henceforth we set $\mathbf{0} := (0, \dots, 0) \in \mathbb{Z}^n$ and $\mathbf{1} := (1, \dots, 1) \in \mathbb{Z}^n$.

Proposition 1

•
$$(\Delta^{\vee})^{\vee} = \Delta.$$

•
$$I_{\Delta^{\vee}} = (x_{F^c} \mid F \in \Delta).$$

- $(I_{\Delta^{\vee}})_F \cong k[\Delta]_{F^c}$ for all $F \subseteq \{n\}$.
- $\underline{\operatorname{Ext}}_{S}^{i}(k[\Delta], S(-1))_{F} \cong \operatorname{Tor}_{\#F^{c}-i}(I_{\Delta^{\vee}}, k)_{F^{c}}$ for all i and $F \subseteq [n]$.
- (N. Terai around '99) $pd_S(k[\Delta]) = reg_S(I_{\Delta^{\vee}})$.
- (J. A. Eagon and V. Reiner '98) k[Δ] is Cohen–Macaulay iff I_{Δ[∨]} has a linear resolution.

The grade shift ${\bf 1}$ is the multigraded ver. of Gorenstein parameter in the sense that

$$\underline{\mathsf{Ext}}^i_{\mathcal{S}}(k, \mathcal{S}(-1)) \cong \begin{cases} k & i = n = \dim S, \\ 0 & i \neq n. \end{cases}$$

Remark

Throughout the whole slides, every \mathbb{Z}^n -graded module M is considered as a \mathbb{Z} -graded one with

$$M_i := igoplus_{\substack{\mathbf{a}:=(a_1,\ldots,a_n)\in\mathbb{Z}^n,\ \sum_{j=1}^n a_j=n}} M_{\mathbf{a}}$$

for all *i*.

In the previous proposition, $pd_S(-)$ and $reg_S(-)$ denote projective dimension and Castelnuovo–Mumford regularity (with respect to the \mathbb{Z} -grading stated above).

Why we call Δ^{\vee} "Alexander dual".

If $\Delta \subseteq \partial 2^{[n]} = 2^{[n]} \setminus \{[n]\}$, then

$$|\Delta^{\vee}| \underset{\text{homotopy eq.}}{\simeq} \left|\partial 2^{[n]}\right| \setminus |\Delta|$$
 .

The previous proposition and the celebrated Hochster's formula for local cohomology modules and Tor modules imply the following Alexander duality in the usual sense:

$$\widetilde{H}^{i}(|\Delta|;k) \cong \widetilde{H}_{(n-2)-i-1}(|\Delta^{\vee}|;k) \cong \widetilde{H}_{(n-2)-i-1}\left(\left|\partial 2^{[n]}\right| \setminus |\Delta|;k\right)$$
for all *i*.

Note that $S(-F) := S(-e_F) \cong Sx_F$ is a free left S-module for $F \subseteq [n]$.

Definition (K. Yanagawa '00)

 $M \in S$ -gr_{\mathbb{Z}^n} is called squarefree iff the one of (hence all of) the following equivalent conditions:

(1)

$$\exists \bigoplus_{j=1}^{q} Sx_{G_{j}} \longrightarrow \bigoplus_{i=1}^{p} Sx_{F_{i}} \longrightarrow M \longrightarrow 0 \quad (ex)$$
where $F_{i}, G_{j} \subseteq [n]$ and $p, q \in \mathbb{Z}_{+}$.
(2) $M = \bigoplus_{\mathbf{a} \in \mathbb{Z}_{\geq 0}^{n}} M_{\mathbf{a}}$ and
 $M_{\mathbf{a}} \ni m \longmapsto x_{i}m \in M_{\mathbf{a}+\mathbf{e}_{i}}$
is k-isomorphic for $\mathbf{a} = (a_{1}, \dots, a_{n}) \in \mathbb{Z}_{\geq 0}^{n}$ and $i \in [n]$ with $a_{i} \geq 1$

Henceforth S-Sq := {Squarefree left S-modules} $\subset_{\text{full sub.}} S-\text{gr}_{\mathbb{Z}^n}$. The condition (2) says that $M \in S$ -Sq is completely determined by its squarefree part

$$M_{[0,1]} := \bigoplus_{F \subseteq [n]} M_F.$$

Example 1

 $k[\Delta]$ and I_{Δ} are squarefree; Indeed they have the following decomposition

$$k[\Delta] = \bigoplus_{F \in \Delta} k[x_i \mid i \in F] x_F, \quad I_\Delta = \bigoplus_{F \in 2^{[n]} \setminus \Delta} k[x_i \mid i \in F] x_F.$$

 I_{Δ}/I_{Γ} is also squarefree for simpl. cpxes Δ, Γ with $\Delta \subseteq \Gamma$.

Proposition 2

- (1) S-Sq is closed under extensions, Ker, Coker; In particular it is abelian. Moreover it has enough projectives and enough injectives.
- (2) The indecomposable projective (resp. injective) objects are just $Sx_F \cong S(-F)$ (resp. $S/\mathfrak{p}_F = k[x_i \mid i \in F]$) with $F \subseteq [n]$, up to isom, where $\mathfrak{p}_F := (x_i \mid i \in F^c)$.

Let T denote the complex shift functor. Set

$$\omega := T^n(S(-1)) \in D^b(S\operatorname{-gr}_{\mathbb{Z}^n}).$$

The localization $\omega_{p_{\emptyset}}$ at the graded maximal ideal $p_{\emptyset} = (x_1, \ldots, x_n)$ is then the normalized dualizing complex of S, and the functor

$$\mathscr{D}_{\mathcal{S}}:=\mathsf{R}\underline{\mathsf{Hom}}_{\mathcal{S}}(-,\omega):D^b(S\operatorname{-}\mathsf{gr}_{\mathbb{Z}^n}) o D^b(\operatorname{gr}_{\mathbb{Z}^n}\operatorname{-}\mathcal{S})\cong D^b(S\operatorname{-}\operatorname{gr}_{\mathbb{Z}^n})$$

is a duality on $D^b(S\operatorname{-gr}_{\mathbb{Z}^n})$, and hence $\mathscr{D}_S^2 \cong \operatorname{id}_{D^b(S\operatorname{-gr}_{\mathbb{Z}^n})}$.

Because

- A projective resolution P[•] of M ∈ S-Sq in S-Sq consists of Sx_F ≃ S(−F) for some F ∈ [n], which is also projective in S-gr_{Zⁿ}
- $\operatorname{Hom}(S(-F), S(-1)) \cong S(-F^c)$ for any $F \subseteq [n]$,

we see

Proposition 3

(1) $D^b(S-\operatorname{Sq}) \cong D^b_{S-\operatorname{Sq}}(S-\operatorname{gr}_{\mathbb{Z}^n}) \underset{\operatorname{full sub.}}{\subset} D^b(S-\operatorname{gr}_{\mathbb{Z}^n}).$

(2) \mathscr{D}_S is (more precisely induces) a duality on $D^b(S-Sq)$.

The cpx $\omega = T^n(S(-1))$ has the following injective resolution $D^{\bullet}(S)$ in $D^b(S-Sq)$:

$$0 o D^{-n}(S) = S o \dots o D^p(S) := \bigoplus_{\substack{F \subseteq [n], \\ \#F = -p}} S/\mathfrak{p}_F$$

 $o \dots o D^0(S) = S/\mathfrak{p}_{\varnothing} o 0,$

where

$$D^p(S) \supset S/\mathfrak{p}_F
i 1 \mapsto \sum_{i \in F} \pm 1 \in S/\mathfrak{p}_{F \cup i} \subset D^{p+1}(S).$$

In conjunction with the following (non-trivial) natural isom.

$$\underline{\operatorname{Hom}}_{S}(M, S/\mathfrak{p}_{F})_{\geq 0} \cong \underline{\operatorname{Hom}}_{k}(M_{F}, k)(-F) \underline{\otimes}_{k} S/\mathfrak{p}_{F} \ (\cong (S/\mathfrak{p}_{F})^{\dim_{k} M_{F}}),$$

in Sq-S for $M \in S$ -Sq, we have

Proposition 4

For $M \in D^b(S$ -Sq), the cpx $\mathscr{D}_S(M) \cong \mathscr{D}_S(M)_{\geq 0}$ is qis to the cpx $D^{\bullet}(M)$ defined as follows;

$$D^{p}(M) := \bigoplus_{\substack{i \in \mathbb{Z}, F \subseteq [n], \\ p = -i - \#F}} \underline{\operatorname{Hom}}_{k}(M_{F}^{i}, k)(-F) \underline{\otimes}_{k} S/\mathfrak{p}_{F}$$

and the differential map is given as

$$f \otimes x \mapsto (-1)^p (\partial^i_M \circ f) \otimes x + f \otimes \partial^{p+i}_{D^{\bullet}(S)}(x)$$

for $f \otimes x \in \operatorname{Hom}_k(M_F, k)(-F) \underline{\otimes}_k S/\mathfrak{p}_F$ with p = -i - #F.

- In his paper [Math. Res. Lett. 10 (2003)], Yanagawa constructed a sheaf M⁺ of M on |2^[n]| with values in k.
- The construction allowed him to generalize Hochster's formula for local cohomology modules stated above, and furthermore to detect a relation between the local duality and the Poincaré–Verdier duality through $M \rightarrow M^+$.
- See loc. cit. for details.

Generalized Alexander duality

Generalized Alexander duality

Let *E* be the exterior algebra of $\text{Hom}_k(S_1, k)$ over *k* and *y_i* be the *k*-dual base of *x_i*. Set deg(*y_i*) := *e_i* and

$$y_F := \begin{cases} y_{i_1} \wedge y_{i_2} \wedge \cdots \wedge y_{i_s} & \text{if } F = \{i_1, \dots, i_s\} \subseteq [n] \text{ with } i_1 < \cdots < i_s, \\ 1 & \text{if } F = \emptyset. \end{cases}$$

Definition (T. Römer '01)

 $N \in E$ -gr_{\mathbb{Z}^n} is called squarefree iff it satisfies the one of (hence all of) the following equivalent conditions:

(1)

$$\exists \bigoplus_{j=1}^{q} Ey_{G_{j}} \longrightarrow \bigoplus_{i=1}^{p} Ey_{F_{i}} \longrightarrow N \longrightarrow 0$$
where $F_{i}, G_{j} \subseteq [n]$ and $p, q \in \mathbb{Z}_{+}$.
(2) $N = \bigoplus_{F \subseteq [n]} N_{F}$, where $N_{F} := N_{e_{F}}$.

 $\mathsf{Set}\ E\mathsf{-}\mathsf{Sq} := \{\mathsf{squarefree}\ \mathsf{left}\ E\mathsf{-}\mathsf{modules}\} \underset{\mathsf{full}\ \mathsf{sub.}}{\subset} E\mathsf{-}\mathsf{gr}_{\mathbb{Z}^n}.$

Example 2

For a simpl. cpx Δ on [n],

$$J_{\Delta} := E \left\langle y_{F} \mid F \in 2^{[n]} \setminus \Delta \right\rangle E, \quad k \langle \Delta \rangle := E / J_{\Delta}$$

are squarefree.

Proposition 5

E-Sq is closed under extensions, Ker, Coker; In particular it is abelian. Moreover it has enough projectives and enough injectives.

Generalized Alexander duality

• For $M \in S$ -Sq with $\oplus_{j=1}^q Sx_{G_j} \xrightarrow{f} \bigoplus_{i=1}^p Sx_{F_i} \to M \to 0$, where

$$f(x_{G_j}) = \sum_{\substack{1 \leq i \leq p, \\ F_i \subseteq G_j}} k_{ji} x_{F_i \setminus G_j} x_{G_j}, \quad k_{ji} \in k,$$

let M_E be the cokernel of the map $\bigoplus_{j=1}^q Ey_{G_j} \xrightarrow{f_E} \bigoplus_{i=1}^p Ey_{F_i}$ defined by

$$f_E(yy_{G_j}) = \sum_{\substack{1 \le i \le \rho, \\ F_i \subseteq G_j}} \pm k_{ji} yy_{G_j \setminus F_i} y_{F_i},$$

where \pm is chosen to satisfy $\pm y_{G_j \setminus F_i} y_{F_i} = y_{G_j}$.

- The module M_E is then squarefree and unique up to isom. in E-gr_{Zⁿ} and assignment M → M_E gives rise to a functor E : S-Sq → E-Sq.
- Similarly we have a functor S : E-Sq \rightarrow S-Sq.

Theorem 1 (T. Römer, '01)

The pair of functors (S, \mathcal{E}) is an equivalence between S-Sq and E-Sq.

- $\mathcal{E}(M)_F \cong M_F$ for all $F \subseteq [n]$ and $M \in S$ -Sq;
- In particular

$$\mathcal{E}(M) \cong \bigoplus_{F \subseteq [n]} M_F$$

as \mathbb{Z}^n -graded *k*-vector spaces.

• $\mathcal{E}(k[\Delta]) \cong k\langle \Delta \rangle$ and $\mathcal{E}(I_{\Delta}) \cong J_{\Delta}$ for any simpl. cpx Δ on [n].

Generalized Alexander duality

- Any $N \in \operatorname{gr}_{\mathbb{Z}^n} E$ equipped with the structure of a left *E*-module with $yn = (-1)^{|y||n|} ny$ for homogeneous $y \in E$ and $n \in N$, where |y| and |n| denote the \mathbb{Z} -degrees of y and n.
- Let $\tau_E : \operatorname{gr}_{\mathbb{Z}^n} E \to E \operatorname{-gr}_{\mathbb{Z}^n}$ be the functor induced from the observation above.
- Since E is injective, we have the duality D_E := <u>Hom</u>_E(−, E) and hence the autofunctor τ_ED_E on E-gr_{Zⁿ}.

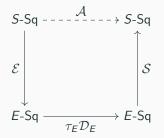
Theorem 2 (T. Römer '01)

- (1) $\tau_E \mathcal{D}_E(N) \in E\text{-Sq}$ for $N \in E\text{-Sq}$ and hence the functor $\mathcal{A} := S \tau_E \mathcal{D}_E \mathcal{E}$ is a duality on S-Sq.
- (2) Furthermore \mathcal{A} is a "generalized Alexander duality" in the sense that

 $\mathcal{A}(k[\Delta]) \cong I_{\Delta^{\vee}}$

for any simpl. $cpx \Delta$ on [n].

Generalized Alexander duality



 Independently E. Miller also constructed a generalized Alexander duality of *M* ∈ *S*-Sq. According to his construction, *A*(*M*) is the squarefree module, unique up to isomorphism, satisfying

$$\mathcal{A}(M)/\mathcal{A}(M)_{>1} \cong (\underline{\mathrm{Hom}}_k(M,k)(-1))_{\geq 0}.$$

• Actually his construction is valid for positively t-determined modules, a generalization of squarefree modules by him.

Proposition 6 (E. Miller '00, T. Römer '01) Let $M \in S$ -Sq.

(1)
$$\mathcal{A}(M)_F \cong M_{F^c}$$
 for all $F \subseteq [n]$.

(2)
$$\operatorname{Ext}^{i}_{S}(M, S(-1))_{F} \cong \operatorname{Tor}_{\#F^{c}-i}(\mathcal{A}(M), k)_{F^{c}}$$
 for all i and $F \subseteq [n]$

(3)
$$\operatorname{pd}_{S}(M) = \operatorname{reg}_{S}(\mathcal{A}(M)).$$

(4) *M* is CM iff $\mathcal{A}(M)$ has a linear resolution.

Alexander duality and Koszul duality (BGG correspondence)

Proposition 7 $D^{b}(E-Sq) \cong D^{b}_{E-Sq}(E-gr_{\mathbb{Z}^{n}}) \underset{\text{full sub.}}{\subset} D^{b}(E-gr_{\mathbb{Z}^{n}}).$

- S and E are Koszul and $E^! = S$.
- Moreover *E* is of finite dimension over *k* and *S* is noetherian.
- By considering Zⁿ-grading instead of Z-grading in Koszul duality between S and E, we obtain the following.

Proposition 8

We have the equivalences $\mathscr{F}: D^b(E\operatorname{-}\operatorname{gr}_{\mathbb{Z}^n}) \to D^b(S\operatorname{-}\operatorname{gr}_{\mathbb{Z}^n})$ and $\mathscr{G}: D^b(S\operatorname{-}\operatorname{gr}_{\mathbb{Z}^n}) \to D^b(E\operatorname{-}\operatorname{gr}_{\mathbb{Z}^n}).$

Let $\mathscr{S}, \mathscr{E}, \mathscr{A}$ be the functors induced from $\mathcal{S}, \mathcal{E}, \mathcal{A}$ between corresponding bounded derived categories, and $\sigma^{\mathbf{a}}$ the grade shift functor for $\mathbf{a} \in \mathbb{Z}^n$.

Theorem 3 (K. Yanagawa '04)

The functor σ⁻¹ 𝔅 induces the one σ⁻¹𝔅 : D^b(E-Sq) → D^b(S-Sq).
 The functor 𝔅σ¹ induces the one 𝔅σ¹ : D^b(S-Sq) → D^b(E-Sq).
 σ⁻¹𝔅𝔅 ≅ 𝔅𝔅σ¹ ≅ 𝔅𝔅σ¹ ≅ 𝔅𝔅𝔅.

Sketch of proof

Let $M \in D^b(S\operatorname{-Sq})$ and set $N := \mathscr{E}(M)$. By Prop. 4,

$$\mathscr{D}_{S}(M)^{p} = \bigoplus_{\substack{F \subseteq [n], \\ p=i-\#F}} \underbrace{\operatorname{Hom}_{k}(M_{F}^{i}, k)(-F) \underline{\otimes}_{k} S/\mathfrak{p}_{F}}_{F \subseteq [n], F \subseteq$$

Because $\mathcal{A}(S/\mathfrak{p}_F) \cong Sx_{F^c} \cong S(-F^c)$, it follows that

$$\sigma^{1}\mathscr{A}\mathscr{D}_{S}(M)^{p} \cong \left(\bigoplus_{\substack{F \subseteq [n], \\ p=i+\#F}} S(-F^{c}) \underline{\otimes}_{k} M_{F}^{i}(F)\right) (1)$$
$$\cong \bigoplus_{\substack{F \subseteq [n], \\ p=i+\#F}} S(F) \underline{\otimes}_{k} M_{F}^{i}(F).$$

Since $N^i \in E$ -Sq and $M^i_F \cong N^i_F$ for all $F \subseteq [n]$,

$$\mathscr{F}\mathscr{E}(M)^{p} = \bigoplus_{\mathbf{a}\in\mathbb{Z}^{n}} \left(\bigoplus_{p=i+|\mathbf{b}|} S_{\mathbf{a}+\mathbf{b}} \otimes_{k} N_{\mathbf{b}}^{i} \right)$$

$$= \bigoplus_{\substack{p=i+|\mathbf{b}|\\p=i+|F|}} S(\mathbf{b}) \underline{\otimes}_{k} N_{\mathbf{b}}^{i}(\mathbf{b})$$

$$= \bigoplus_{\substack{F\subseteq[n],\\p=i+|F|}} S(F) \underline{\otimes}_{k} N_{F}^{i}(F)$$

$$\cong \bigoplus_{\substack{F\subseteq[n],\\p=i+|F|}} S(F) \underline{\otimes}_{k} M_{F}^{i}(F) = \sigma^{1} \mathscr{A} \mathscr{D}_{S}(M)^{p}.$$

Relation to Calabi-Yau property

Recall that T denote the translation functor.

Theorem 4 (K. Yanagawa '04) $(\mathscr{A}\mathscr{D}_{\mathsf{S}})^3 \cong T^{-2n}.$

For example, because

 $\mathscr{A}(S(-F)) \cong S/\mathfrak{p}_{F^c},$ $\mathscr{D}_{\mathsf{S}}(S/\mathfrak{p}_{\mathsf{F}}(-\mathsf{F})) \cong T^{\#\mathsf{F}}(S/\mathfrak{p}_{\mathsf{F}})$

 $\mathscr{A}(S/\mathfrak{p}_F(-F)) \cong S/\mathfrak{p}_{F^c}(-F^c),$ $\mathscr{D}_{S}(S(-F)) \cong T^{n}(S(-F^{c})), \qquad \mathscr{D}_{S}(S/\mathfrak{p}_{F}) \cong T^{\#F}(S/\mathfrak{p}_{F}(-F)).$

for $F \subseteq [n]$, it follows that

$$(\mathscr{AD}_{S})^{3}(S(-F)) \cong (\mathscr{AD})^{2}\mathscr{A}(T^{n}(S(-F^{c})))$$

$$\cong T^{-n}(\mathscr{AD})^{2}(S/\mathfrak{p}_{F})$$

$$\cong T^{-n}(\mathscr{AD})\mathscr{A}(T^{\#F}S/\mathfrak{p}_{F}(-F))$$

$$\cong T^{-n-\#F}\mathscr{AD}(S/\mathfrak{p}_{F^{c}}(-F^{c}))$$

$$\cong T^{-n-\#F}\mathscr{A}(T^{\#F^{c}}(S/\mathfrak{p}_{F^{c}}))$$

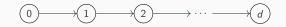
$$\cong T^{-n-\#F-\#F^{c}}\mathscr{A}(S/\mathfrak{p}_{F^{c}}) \cong T^{-2n}(S(-F)),$$

for all $F \subseteq [n]$.

- Actually, *S*-Sq is equivalent to the category of left modules over the tensor of *n*-copies of the path algebra of the quiver of type *A*₂.
- As a result, The natural isomorphism (AD_S)³ ≅ T⁻²ⁿ can be deduced from the fact that the category above is fractionally Calabi-Yau of dimension n/3 (Suggestion of O. Iyama to Yanagawa around 2007).

Relation to Calabi–Yau property

Let Λ_d be the path algebra of the following quiver of type A_{d+1} .



- Note that the k-basis of Λ_1 consists of $e_{0,0} := e_0, e_{1,1} := e_1, e_{1,0}$.
- Set $\Lambda := \Lambda_1^{\otimes_k n}$ and

$$e_{GF} := e_{\chi_G(1),\chi_F(1)} \otimes_k \cdots \otimes_k e_{\chi_G(n),\chi_F(n)}$$

for $F \subseteq G \subseteq [n]$, where χ_F, χ_G denote the characteristic function.

• The k-basis of Λ then consists of all the e_{GF} with $F \subseteq G \subseteq [n]$, and

$$e_{IH}e_{GF} = \begin{cases} 0 & G \neq H, \\ e_{IF} & H = G \end{cases} \quad \text{for } F \subseteq G \subseteq [n] \text{ and } H \subseteq I \subseteq [n].$$

Relation to Calabi–Yau property

 For M ∈ S-Sq, the squarefree part M_[0,1] := ⊕_{F⊆[n]} M_F has the structure of a left Λ-module with the scalar multiplication

$$e_{GF}m = \begin{cases} x_{G\setminus F}m & F = H, \\ 0 & F \neq H \end{cases} \quad (F \subseteq G \subseteq [n], \ H \subseteq [n], \ m \in M_H).$$

- Moreover the k-linear map $M_{[0,1]} \rightarrow N_{[0,1]}$ induced from a morphism $M \rightarrow N$ in S-Sq is then A-linear.
- Thus we have the functor $\Phi_{\Lambda} : S\text{-Sq} \to \Lambda\text{-mod}$.

Proposition 9 (K. Yanagawa '04)

The functor Φ_{Λ} is equivalence.

Example 3 $\Phi_{\Lambda}(I_{\Delta}) = \Lambda \{ e_{F\varnothing} \mid F \notin \Delta \}$ for a simpl. cpx Δ on [n]; In particular $\Phi_{\Lambda}(Sx_F) \cong \Lambda e_F, \quad \Phi_{\Lambda}(k[\Delta]) \cong \Lambda e_{\varnothing} / \Lambda \{ e_{F\varnothing} \mid F \in \Delta \},$ where $e_G = e_{GG}$ for $G \subseteq [n]$.

- Let Φ_S be the inverse of Φ_Λ. The functor between D^b(S-Sq) and D^b(Λ-mod) induced from Φ_S, Φ_Λ are also denoted by them.
- Set $\mathscr{D}_k := \mathbf{R}\operatorname{Hom}_k(-, k)$ and $\mathscr{D}_{\Lambda} := \mathbf{R}\operatorname{Hom}_{\Lambda}(-, \Lambda)$.
- Let τ_Λ : D^b(mod-Λ) → D^b(Λ-mod) be the equivalence induced from the ring isomorphism Λ ∋ e_{GF} → e_{F^cG^c} ∈ Λ^{op}, where Λ^{op} denote the opposite ring of Λ.

Theorem 5 (K. Yanagawa '04)

 $\Phi_S \tau_\Lambda \mathscr{D}_k \Phi_\Lambda \cong \mathscr{A} \text{ and } \Phi_S \tau_\Lambda \mathscr{D}_\Lambda \Phi_\Lambda \cong T^{-n} \mathscr{D}_S.$

In particular, $\mathscr{AD}_{S} \cong T^{-n} \Phi_{S} \mathscr{D}_{k} \mathscr{D}_{\Lambda} \Phi_{\Lambda}$.

Let \mathcal{T} be a *k*-linear triangulated category with dim_{*k*} Hom_{\mathcal{T}}(*X*, *Y*) < ∞ for all *X*, *Y* $\in \mathcal{T}$. Let *n*, *d* be positive integers.

• A *k*-linear autofunctor *F* on *T* is said to be a Serre functor if there exists a *k*-linear isomorphism

 $\operatorname{Hom}_{\mathcal{T}}(Y, F(X)) \cong \operatorname{Hom}_{k}(\operatorname{Hom}_{\mathcal{T}}(X, Y))$

functorial in $X, Y \in \mathcal{T}$ for all $X, Y \in \mathcal{T}$.

• \mathcal{T} is said to be fractionally Calabi–Yau of dimension n/d (abbrev. n/d-CY) if it has a Serre functor and there exists an isomorphism of k-linear functors $F^d \cong T^n$.

Proposition 10 (D. Happel)

For a finite-dimensional k-algebra A of finite global dimension,

$$\mathscr{D}_k\mathscr{D}_A\cong \mathscr{D}_k(A) \overset{\mathsf{L}}{\otimes}_A-: D^b(A\operatorname{\mathsf{-mod}}) o D^b(A\operatorname{\mathsf{-mod}})$$

is a Serre functor, where $\mathscr{D}_A := \mathbf{R} \operatorname{Hom}_A(-, A)$.

Proposition 11 (M. Herschend and O. Iyama '11)

Let A_i (i = 1, 2) be finite-dimensional k-algebra of finite global dimension. Assume $A_1 \otimes_k A_2$ is also of finite global dimension, and $D^b(A_1\text{-mod})$ (resp. $D^b(A_2\text{-mod})$) is m_1/l_1 -CY (resp. m_2/l_2 -CY). Then $D^b(A_1 \otimes_k A_2\text{-mod})$ is m/l-CY, where $l = \text{lcm}(l_1, l_2)$ and $m = l((m_1l_2 + l_1m_2)/(l_1l_2))$.

Proposition 12 (M. Kontsevich and E. Kreines)

The category $D^b(\Lambda_d \text{-mod})$ is Calabi–Yau of dimension d/(d+2).

- Since Λ_d is finite-dimensional k-algebra of finite global dimension, the functor D_kD_{Λ_d} is a Serre functor.
- $\Lambda = \Lambda_1^{\otimes_k n}$ is of finite global dimension, since Λ -mod \cong S-Sq.
- Consequently, we see that $\mathscr{D}_k \mathscr{D}_{\Lambda}$ is also a Serre functor and $D^b(\Lambda\operatorname{-mod})$ is Calabi–Yau of dimension n/3.

Corollary 1 (O. Iyama around '07)

The isomorphism $(\mathscr{AD}_S)^3 \cong T^{-2n}$ is deduced from the fact that $D^b(\text{mod}-\Lambda)$ is Calabi–Yau of dimension n/3.

Indeed

$$(\mathscr{A}\mathscr{D}_S)^3 \cong T^{-3n} \Phi_S(\mathscr{D}_k \mathscr{D}_\Lambda)^3 \Phi_\Lambda \cong T^{-2n}.$$

Remark

According to the paper [Compos. Math. **129** (2001)] of J. Miyachi and A. Yekutieli, Proposition 12 was already proved by E. Kreines and had been known also to M. Kontsevich.

Further developments

Further developments

Let
$$\mathbf{t} := (t_1, \dots, t_n) \in \mathbb{Z}^n$$
 with $t_i \geq 1$ for all i , and define

$$\mathbf{a} := (a_1, \ldots, a_n) \leq \mathbf{b} := (b_1, \ldots, b_n) \iff \forall i, a_i \leq b_i.$$

Definition (E. Miller '00)

 $M \in S$ -gr_{\mathbb{Z}^n} is said to be positively **t**-determined if it satisfies one of (hence all of) the following equivalent conditions:

- (1) $\exists \bigoplus_{j=1}^{q} S(-\mathbf{b}_{i}) \longrightarrow \bigoplus_{i=1}^{p} S(-\mathbf{a}_{i}) \longrightarrow M \longrightarrow 0$ with $\mathbf{0} \le \mathbf{a}_{i} \le \mathbf{t}$ and $\mathbf{0} \le \mathbf{b}_{j} \le \mathbf{t}$ for all i, j.
- (2) $M = \bigoplus_{\mathbf{a} \in \mathbb{Z}_{\geq 0}^n} M_{\mathbf{a}}$ and the map

 $M_{\mathbf{a}} \ni m \mapsto x_i m \in M_{\mathbf{a}+\mathbf{e}_i}$

is isomorphic for $\mathbf{a} \in \mathbb{Z}^n$ and *i* with $a_i \geq t_i$.

- $\bullet\,$ A pos. 1-det. module is just a squarefree module.
- Miller defined the Alexander duality functor $\mathcal{A}_{\mathbf{t}}$ on the category S-Sq_t = {pos. t-det. modules} $\underset{\text{full sub}}{\subset} S$ -gr $_{\mathbb{Z}^n}$.
- $\mathscr{D}_{\mathbf{t}} := \mathbf{R}\underline{Hom}_{S}(-, T^{n}S(-\mathbf{t}))$ is a duality on S-Sq_t.
- $\mathscr{A}_1 = \mathscr{A}$ and $\mathscr{D}_1 = \mathscr{D}_S$.
- Most of results stated in this lecture can be generalized to pos. t-det. modules.
- See Miller's paper [J. Algebra **231** (2000)] for details of basic properties,
- and the one [Adv. Math. **226** (2011)] by M. Brun and G. Fløystad for the functor $\mathscr{A}_t \mathscr{D}_t$.

Thank you for your attention.