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Stanley–Reisner rings and Alexander dual
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Stanley–Reisner rings and Alexander dual

n ∈ Z+ := {k ∈ Z | k > 0}. [n] := {1, 2, . . . , n}.

� An (abstract) simplicial complex on [n] is ∆ ⊆ 2[n] s.t.

F ⊆ G ⊆ [n] , G ∈ ∆ =⇒ F ∈ ∆.

� For a simpl. cpx ∆, we can construct a corresponding geometric

simpl. cpx |∆|, called the geometric realization.

∆ =


{1, 2, 3} ,
{1, 2} , {1, 3} , {2, 3} ,
{2, 4} , {3, 4} ,
{1} , {2} , {3} , {4} ,∅


|∆| =
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Stanley–Reisner rings and Alexander dual

� S := k[x1, . . . , xn] = a polynomial ring over a field k , considered as a

Zn-graded algebra with deg xi = ei := (0, . . . , 0, 1, 0, . . . , 0).

� For F ⊆ [n],

xF :=

{∏
i∈F xi F 6= ∅,

1 F = ∅,

and hence deg xF = eF :=
∑

i∈F ei . Note that F ⊆ G iff xF | xG for

F ,G ∈ 2[n].

Definition

The (Zn-graded) ideal of S

I∆ := (xF | F ∈ 2[n] \∆)

= (xF | F is a min. element of 2[n] \∆)

and (Zn-graded k-algebra) k[∆] := S/I∆ are called the Stanley–Reisner

ideal and the Stanley–Reisner ring.
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Stanley–Reisner rings and Alexander dual

|∆| =

The minimal non-faces are {1, 4}
and {2, 3, 4}.

I∆ = (x1x4, x2x3x4),

k[∆] = k[x1, x2, x3, x4]/(x1x4, x2x3x4).

� {I∆ | ∆ is a simpl. cpx. on {n}} =

{
the ideals generated by

some xF ’s with F ⊆ [n]

}
.

� k[∆] is designed to satisfy k[∆]F := k[∆]eF 6= 0 iff F ∈ ∆, for all

F ⊆ [n]. Moreover as Zn-graded k-vector spaces,

k[∆] =
⊕
F∈∆

k[xi | i ∈ F ]xF ,

and each k[xi | i ∈ F ]xF is k[xi | i ∈ F ]-free.
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Stanley–Reisner rings and Alexander dual

Why we do a study on k[∆]

(1) Applications to enumeration of the number of the faces of |∆| (e.g.
Upper Bound Theorem and g -theorem).

(2) Interesting interaction among algebraic properties of k[∆],

combinatorial ones of ∆, and geometric ones of |∆|.
(3) A remarkable aspect of k[∆] in view of homological algebra; e.g. a

connection to Koszul duality (or BGG correspondence), detected by

K. Yanagawa.

References for (1) and (2):

� W. Bruns and J. Herzog, Cohen–Macaulay rings, 2nd ed.,

Cambridge Univ. Press, 1998.

� J. Herzog and T. Hibi, Monomial Ideals, Springer, 2011.

� E. Miller and B. Sturmfels, Combinatorial Commutative Algebra,

Springer, 2005.

� R. P. Stanley, Combinatorics and Commutative Algebra, Birkhäuser,

1996. 6



Stanley–Reisner rings and Alexander dual

Definition

An Alexander dual of ∆ is a simplicial complex

∆∨ := {F ⊆ [n] | F c := [n] \ F 6∈ ∆}
= 2[n] \ {F ⊆ [n] | F c ∈ ∆}

|∆| = |∆∨| =
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Stanley–Reisner rings and Alexander dual

Henceforth we set 0 := (0, . . . , 0) ∈ Zn and 1 := (1, . . . , 1) ∈ Zn.

Proposition 1

� (∆∨)∨ = ∆.

� I∆∨ = (xF c | F ∈ ∆).

� (I∆∨)F ∼= k[∆]F c for all F ⊆ {n}.
� ExtiS(k[∆], S(−1))F ∼= Tor#F c−i (I∆∨ , k)F c for all i and F ⊆ [n].

� (N. Terai around ’99) pdS(k[∆]) = regS(I∆∨).

� (J. A. Eagon and V. Reiner ’98) k[∆] is Cohen–Macaulay iff I∆∨ has

a linear resolution.

The grade shift 1 is the multigraded ver. of Gorenstein parameter in the

sense that

ExtiS(k , S(−1)) ∼=

{
k i = n = dim S ,

0 i 6= n. 8



Stanley–Reisner rings and Alexander dual

Remark

Throughout the whole slides, every Zn-graded module M is considered

as a Z-graded one with

Mi :=
⊕

a:=(a1,...,an)∈Zn,∑n
j=1 aj=n

Ma

for all i .

In the previous proposition, pdS(−) and regS(−) denote projective

dimension and Castelnuovo–Mumford regularity (with respect to the

Z-grading stated above).
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Stanley–Reisner rings and Alexander dual

Why we call ∆∨ “Alexander dual”.

If ∆ ⊆ ∂2[n] = 2[n] \ {[n]}, then

|∆∨| '
homotopy eq.

∣∣∣∂2[n]∣∣∣ \ |∆| .

The previous proposition and the celebrated Hochster’s formula for local

cohomology modules and Tor modules imply the following Alexander

duality in the usual sense:

H̃ i (|∆| ; k) ∼= H̃(n−2)−i−1(|∆∨| ; k) ∼= H̃(n−2)−i−1

(∣∣∣∂2[n]∣∣∣ \ |∆| ; k
)

for all i .
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Squarefree modules
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Squarefree modules

Note that S(−F ) := S(−eF ) ∼= SxF is a free left S-module for F ⊆ [n].

Definition (K. Yanagawa ’00)

M ∈ S-grZn is called squarefree iff the one of (hence all of) the

following equivalent conditions:

(1)

∃
q⊕

j=1

SxGj −→
p⊕

i=1

SxFi −→ M −→ 0 (ex)

where Fi ,Gj ⊆ [n] and p, q ∈ Z+.

(2) M =
⊕

a∈Zn
≥0

Ma and

Ma 3 m 7−→ xim ∈ Ma+ei

is k-isomorphic for a = (a1, . . . , an) ∈ Zn
≥0 and i ∈ [n] with ai ≥ 1.
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Squarefree modules

Henceforth S-Sq := {Squarefree left S-modules} ⊂
full sub.

S-grZn .

The condition (2) says that M ∈ S-Sq is completely determined by its

squarefree part

M[0,1] :=
⊕
F⊆[n]

MF .

Example 1

k[∆] and I∆ are squarefree; Indeed they have the following

decomposition

k[∆] =
⊕
F∈∆

k[xi | i ∈ F ]xF , I∆ =
⊕

F∈2[n]\∆

k[xi | i ∈ F ]xF .

I∆/IΓ is also squarefree for simpl. cpxes ∆, Γ with ∆ ⊆ Γ.
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Squarefree modules

Proposition 2

(1) S-Sq is closed under extensions, Ker，Coker; In particular it is

abelian. Moreover it has enough projectives and enough injectives.

(2) The indecomposable projective (resp. injective) objects are just

SxF ∼= S(−F ) (resp. S/pF = k[xi | i ∈ F ]) with F ⊆ [n], up to isom,

where pF := (xi | i ∈ F c).

Let T denote the complex shift functor. Set

ω := T n(S(−1)) ∈ Db(S-grZn).

The localization ωp∅ at the graded maximal ideal p∅ = (x1, . . . , xn) is

then the normalized dualizing complex of S , and the functor

DS := RHomS(−, ω) : Db(S-grZn) → Db(grZn -S) ∼= Db(S-grZn)

is a duality on Db(S-grZn), and hence D2
S
∼= idDb(S-grZn )

.
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Squarefree modules

Because

� A projective resolution P• of M ∈ S-Sq in S-Sq consists of

SxF ∼= S(−F ) for some F ∈ [n], which is also projective in S-grZn ,

� Hom(S(−F ), S(−1)) ∼= S(−F c) for any F ⊆ [n],

we see

Proposition 3

(1) Db(S-Sq) ∼= Db
S-Sq(S-grZn) ⊂

full sub.
Db(S-grZn).

(2) DS is (more precisely induces) a duality on Db(S-Sq).
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Squarefree modules

The cpx ω = T n(S(−1)) has the following injective resolution D•(S) in

Db(S-Sq):

0 → D−n(S) = S → · · · → Dp(S) :=
⊕
F⊆[n],
#F=−p

S/pF

→ · · · → D0(S) = S/p∅ → 0,

where

Dp(S) ⊃ S/pF 3 1 7→
∑
i∈F

±1 ∈ S/pF∪i ⊂ Dp+1(S).

In conjunction with the following (non-trivial) natural isom.

HomS(M, S/pF )≥0
∼= Homk(MF , k)(−F )⊗kS/pF (∼= (S/pF )

dimk MF ),

in Sq-S for M ∈ S-Sq, we have
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Squarefree modules

Proposition 4

For M ∈ Db(S-Sq), the cpx DS(M) ∼= DS(M)≥0 is qis to the cpx

D•(M) defined as follows;

Dp(M) :=
⊕

i∈Z, F⊆[n],
p=−i−#F

Homk(M
i
F , k)(−F )⊗kS/pF

and the differential map is given as

f ⊗ x 7→ (−1)p(∂ i
M ◦ f )⊗ x + f ⊗ ∂p+i

D•(S)(x)

for f ⊗ x ∈ Homk(MF , k)(−F )⊗kS/pF with p = −i −#F .
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Squarefree modules

� In his paper [Math. Res. Lett. 10 (2003)], Yanagawa constructed a

sheaf M+ of M on
∣∣2[n]∣∣ with values in k .

� The construction allowed him to generalize Hochster’s formula for

local cohomology modules stated above, and furthermore to detect a

relation between the local duality and the Poincaré–Verdier duality

through M → M+.

� See loc. cit. for details.
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Generalized Alexander duality
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Generalized Alexander duality

Let E be the exterior algebra of Homk(S1, k) over k and yi be the k-dual

base of xi . Set deg(yi ) := ei and

yF :=

{
yi1 ∧ yi2 ∧ · · · ∧ yis if F = {i1, . . . , is} ⊆ [n] with i1 < · · · < is ,

1 if F = ∅.

Definition (T. Römer ’01)

N ∈ E -grZn is called squarefree iff it satisfies the one of (hence all of)

the following equivalent conditions:

(1)

∃
q⊕

j=1

EyGj −→
p⊕

i=1

EyFi −→ N −→ 0

where Fi ,Gj ⊆ [n] and p, q ∈ Z+.

(2) N =
⊕

F⊆[n] NF , where NF := NeF .

20



Generalized Alexander duality

Set E -Sq := {squarefree left E -modules} ⊂
full sub.

E -grZn .

Example 2

For a simpl. cpx ∆ on [n],

J∆ := E
〈
yF | F ∈ 2[n] \∆

〉
E , k〈∆〉 := E/J∆

are squarefree.

Proposition 5

E -Sq is closed under extensions, Ker, Coker; In particular it is abelian.

Moreover it has enough projectives and enough injectives.
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Generalized Alexander duality

� For M ∈ S-Sq with ⊕q
j=1SxGj

f→
⊕p

i=1 SxFi → M → 0, where

f (xGj ) =
∑

1≤i≤p,
Fi⊆Gj

kjixFi\Gj
xGj , kji ∈ k ,

let ME be the cokernel of the map
⊕q

j=1 EyGj

fE→
⊕p

i=1 EyFi defined

by

fE (yyGj ) =
∑

1≤i≤p,
Fi⊆Gj

±kjiyyGj\Fi
yFi ,

where ± is chosen to satisfy ±yGj\Fi
yFi = yGj .

� The module ME is then squarefree and unique up to isom. in E -grZn

and assignment M → ME gives rise to a functor E : S-Sq → E -Sq.

� Similarly we have a functor S : E -Sq → S-Sq.
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Generalized Alexander duality

Theorem 1 (T. Römer, ’01)

The pair of functors (S, E) is an equivalence between S-Sq and E -Sq.

� E(M)F ∼= MF for all F ⊆ [n] and M ∈ S-Sq;

� In particular

E(M) ∼=
⊕
F⊆[n]

MF

as Zn-graded k-vector spaces.

� E(k[∆]) ∼= k〈∆〉 and E(I∆) ∼= J∆ for any simpl. cpx ∆ on [n].
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Generalized Alexander duality

� Any N ∈ grZn -E equipped with the structure of a left E -module with

yn = (−1)|y ||n|ny for homogeneous y ∈ E and n ∈ N, where |y | and
|n| denote the Z-degrees of y and n.

� Let τE : grZn -E → E -grZn be the functor induced from the

observation above.

� Since E is injective, we have the duality DE := HomE (−,E ) and

hence the autofunctor τEDE on E -grZn .

Theorem 2 (T. Römer ’01)

(1) τEDE (N) ∈ E -Sq for N ∈ E -Sq and hence the functor

A := SτEDEE is a duality on S-Sq.

(2) Furthermore A is a “generalized Alexander duality” in the sense that

A(k[∆]) ∼= I∆∨

for any simpl. cpx ∆ on [n].
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Generalized Alexander duality

S-Sq S-Sq

E -Sq E -Sq

A

E

τEDE

S
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Generalized Alexander duality

� Independently E. Miller also constructed a generalized Alexander

duality of M ∈ S-Sq. According to his construction, A(M) is the

squarefree module, unique up to isomorphism, satisfying

A(M)/A(M)>1
∼= (Homk(M, k)(−1))≥0.

� Actually his construction is valid for positively t-determined

modules, a generalization of squarefree modules by him.
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Generalized Alexander duality

Proposition 6 (E. Miller ’00, T. Römer ’01)

Let M ∈ S-Sq.

(1) A(M)F ∼= MF c for all F ⊆ [n].

(2) ExtiS(M, S(−1))F ∼= Tor#F c−i (A(M), k)F c for all i and F ⊆ [n].

(3) pdS(M) = regS(A(M)).

(4) M is CM iff A(M) has a linear resolution.
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Alexander duality and Koszul duality (BGG
correspondence)
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Alexander duality and Koszul duality (BGG correspondence)

Proposition 7

Db(E -Sq) ∼= Db
E -Sq(E -grZn) ⊂

full sub.
Db(E -grZn).

� S and E are Koszul and E ! = S .

� Moreover E is of finite dimension over k and S is noetherian.

� By considering Zn-grading instead of Z-grading in Koszul duality

between S and E , we obtain the following.

Proposition 8

We have the equivalences F : Db(E -grZn) → Db(S-grZn) and

G : Db(S-grZn) → Db(E -grZn).
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Alexander duality and Koszul duality (BGG correspondence)

Let S ,E ,A be the functors induced from S, E ,A between corresponding

bounded derived categories, and σa the grade shift functor for a ∈ Zn.

Theorem 3 (K. Yanagawa ’04)

(1) The functor σ−1F induces the one σ−1F : Db(E -Sq) → Db(S-Sq).

(2) The functor G σ1 induces the one G σ1 : Db(S-Sq) → Db(E -Sq).

(3) σ−1FE ∼= A DS and S G σ1 ∼= DSA .
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Alexander duality and Koszul duality (BGG correspondence)

Db(E -Sq) Db(S-Sq)

Db(S-Sq) Db(S-Sq)

σ−1F

S

A DS

Db(S-Sq) Db(E -Sq)

Db(S-Sq) Db(S-Sq)

G σ1

DSA

E
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Alexander duality and Koszul duality (BGG correspondence)

Sketch of proof

Let M ∈ Db(S-Sq) and set N := E (M). By Prop. 4,

DS(M)p =
⊕
F⊆[n],

p=i−#F

Homk(M
i
F , k)(−F )⊗kS/pF

∼=
⊕
F⊆[n],

p=−i−#F

S/p
dimk M

i
F

F .

Because A(S/pF ) ∼= SxF c ∼= S(−F c), it follows that

σ1A DS(M)p ∼=

 ⊕
F⊆[n],

p=i+#F

S(−F c)⊗kM
i
F (F )

 (1)

∼=
⊕
F⊆[n],

p=i+#F

S(F )⊗kM
i
F (F ).

32



Alexander duality and Koszul duality (BGG correspondence)

Since N i ∈ E -Sq and M i
F
∼= N i

F for all F ⊆ [n],

FE (M)p =
⊕
a∈Zn

 ⊕
p=i+|b|

Sa+b ⊗k N
i
b


=

⊕
p=i+|b|

S(b)⊗kN
i
b(b)

=
⊕
F⊆[n],
p=i+|F |

S(F )⊗kN
i
F (F )

∼=
⊕
F⊆[n],
p=i+|F |

S(F )⊗kM
i
F (F ) = σ1A DS(M)p.
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Relation to Calabi–Yau property
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Relation to Calabi–Yau property

Recall that T denote the translation functor.

Theorem 4 (K. Yanagawa ’04)

(A DS)
3 ∼= T−2n.

For example, because

A (S(−F )) ∼= S/pF c , A (S/pF (−F )) ∼= S/pF c (−F c),

DS(S(−F )) ∼= T n(S(−F c)), DS(S/pF ) ∼= T#F (S/pF (−F )),

DS(S/pF (−F )) ∼= T#F (S/pF )

for F ⊆ [n], it follows that
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Relation to Calabi–Yau property

(A DS)
3(S(−F )) ∼= (A D)2A (T n(S(−F c)))

∼= T−n(A D)2(S/pF )

∼= T−n(A D)A (T#FS/pF (−F ))

∼= T−n−#FA D(S/pF c (−F c))

∼= T−n−#FA (T#F c

(S/pF c ))

∼= T−n−#F−#F c

A (S/pF c ) ∼= T−2n(S(−F )),

for all F ⊆ [n].

� Actually, S-Sq is equivalent to the category of left modules over the

tensor of n-copies of the path algebra of the quiver of type A2.

� As a result, The natural isomorphism (A DS)
3 ∼= T−2n can be

deduced from the fact that the category above is fractionally

Calabi–Yau of dimension n/3 (Suggestion of O. Iyama to Yanagawa

around 2007).
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Relation to Calabi–Yau property

Let Λd be the path algebra of the following quiver of type Ad+1.

0 1 2 · · · d

� Note that the k-basis of Λ1 consists of e0,0 := e0, e1,1 := e1, e1,0.

� Set Λ := Λ⊗kn
1 and

eGF := eχG (1),χF (1) ⊗k · · · ⊗k eχG (n),χF (n)

for F ⊆ G ⊆ [n], where χF , χG denote the characteristic function.

� The k-basis of Λ then consists of all the eGF with F ⊆ G ⊆ [n], and

eIHeGF =

{
0 G 6= H,

eIF H = G
for F ⊆ G ⊆ [n] and H ⊆ I ⊆ [n].
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Relation to Calabi–Yau property

� For M ∈ S-Sq, the squarefree part M[0,1] :=
⊕

F⊆[n] MF has the

structure of a left Λ-module with the scalar multiplication

eGFm =

{
xG\Fm F = H,

0 F 6= H
(F ⊆ G ⊆ [n] , H ⊆ [n] , m ∈ MH).

� Moreover the k-linear map M[0,1] → N[0,1] induced from a morphism

M → N in S-Sq is then Λ-linear.

� Thus we have the functor ΦΛ : S-Sq → Λ-mod.

Proposition 9 (K. Yanagawa ’04)

The functor ΦΛ is equivalence.
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Relation to Calabi–Yau property

Example 3

ΦΛ(I∆) = Λ {eF∅ | F 6∈ ∆} for a simpl. cpx ∆ on [n]; In particular

ΦΛ(SxF ) ∼= ΛeF , ΦΛ(k[∆]) ∼= Λe∅/Λ {eF∅ | F ∈ ∆} ,

where eG = eGG for G ⊆ [n].

� Let ΦS be the inverse of ΦΛ. The functor between Db(S-Sq) and

Db(Λ-mod) induced from ΦS ,ΦΛ are also denoted by them.

� Set Dk := RHomk(−, k) and DΛ := RHomΛ(−,Λ).

� Let τΛ : Db(mod-Λ) → Db(Λ-mod) be the equivalence induced from

the ring isomorphism Λ 3 eGF 7→ eF cG c ∈ Λop, where Λop denote the

opposite ring of Λ.
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Relation to Calabi–Yau property

Theorem 5 (K. Yanagawa ’04)

ΦSτΛDkΦΛ
∼= A and ΦSτΛDΛΦΛ

∼= T−nDS .

Db(S-Sq) Db(S-Sq) Db(S-Sq) Db(S-Sq)

Db(Λ-mod) Db(Λ-mod) Db(Λ-mod) Db(Λ-mod).

A

τΛDk

ΦΛ ΦS

T−nDS

τΛDΛ

ΦΛ ΦS

In particular, A DS
∼= T−nΦSDkDΛΦΛ.
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Relation to Calabi–Yau property

Let T be a k-linear triangulated category with dimk HomT (X ,Y ) < ∞
for all X ,Y ∈ T . Let n, d be positive integers.

� A k-linear autofunctor F on T is said to be a Serre functor if there

exists a k-linear isomorphism

HomT (Y ,F (X )) ∼= Homk(HomT (X ,Y ))

functorial in X ,Y ∈ T for all X ,Y ∈ T .

� T is said to be fractionally Calabi–Yau of dimension n/d (abbrev.

n/d-CY) if it has a Serre functor and there exists an isomorphism of

k-linear functors F d ∼= T n.
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Relation to Calabi–Yau property

Proposition 10 (D. Happel)

For a finite-dimensional k-algebra A of finite global dimension,

DkDA
∼= Dk(A)

L
⊗A− : Db(A-mod) → Db(A-mod)

is a Serre functor, where DA := RHomA(−,A).

Proposition 11 (M. Herschend and O. Iyama ’11)

Let Ai (i = 1, 2) be finite-dimensional k-algebra of finite global

dimension. Assume A1 ⊗k A2 is also of finite global dimension, and

Db(A1-mod) (resp. Db(A2-mod)) is m1/l1-CY (resp. m2/l2-CY). Then

Db(A1 ⊗k A2-mod) is m/l-CY, where l = lcm(l1, l2) and

m = l((m1l2 + l1m2)/(l1l2)).
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Relation to Calabi–Yau property

Proposition 12 (M. Kontsevich and E. Kreines)

The category Db(Λd -mod) is Calabi–Yau of dimension d/(d + 2).

� Since Λd is finite-dimensional k-algebra of finite global dimension,

the functor DkDΛd
is a Serre functor.

� Λ = Λ⊗kn
1 is of finite global dimension, since Λ-mod ∼= S-Sq.

� Consequently, we see that DkDΛ is also a Serre functor and

Db(Λ-mod) is Calabi–Yau of dimension n/3.

Corollary 1 (O. Iyama around ’07)

The isomorphism (A DS)
3 ∼= T−2n is deduced from the fact that

Db(mod-Λ) is Calabi–Yau of dimension n/3.

Indeed

(A DS)
3 ∼= T−3nΦS(DkDΛ)

3ΦΛ
∼= T−2n.
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Relation to Calabi–Yau property

Remark

According to the paper [Compos. Math. 129 (2001)] of J. Miyachi and

A. Yekutieli, Proposition 12 was already proved by E. Kreines and had

been known also to M. Kontsevich.
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Further developments
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Further developments

Let t := (t1, . . . , tn) ∈ Zn with ti ≥ 1 for all i , and define

a := (a1, . . . , an) ≤ b := (b1, . . . , bn) ⇐⇒ ∀i , ai ≤ bi .

Definition (E. Miller ’00)

M ∈ S-grZn is said to be positively t-determined if it satisfies one of

(hence all of) the following equivalent conditions:

(1) ∃
⊕q

j=1 S(−bi ) −→
⊕p

i=1 S(−ai ) −→ M −→ 0 with 0 ≤ ai ≤ t and

0 ≤ bj ≤ t for all i , j .

(2) M =
⊕

a∈Zn
≥0

Ma and the map

Ma 3 m 7→ xim ∈ Ma+ei

is isomorphic for a ∈ Zn and i with ai ≥ ti .
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Further developments

� A pos. 1-det. module is just a squarefree module.

� Miller defined the Alexander duality functor At on the category

S-Sqt = {pos. t-det. modules} ⊂
full sub.

S-grZn .

� Dt := RHomS(−,T nS(−t)) is a duality on S-Sqt.

� A1 = A and D1 = DS .

� Most of results stated in this lecture can be generalized to pos.

t-det. modules.

� See Miller’s paper [J. Algebra 231 (2000)] for details of basic

properties,

� and the one [Adv. Math. 226 (2011)] by M. Brun and G. Fløystad

for the functor AtDt.
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Thank you for your attention.
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