Koszulity in Combinatorial Commutative Algebra

Winter School on Koszul Algebra and Koszul Duality

Ryota Okazaki (Fukuoka University of Education)
Feb. 20th, 2022
Osaka City University

First of All

References

K. Yanagawa, Derived category of squarefree modules and local cohomology with monomial ideal support, J. Math. Soc. Japan 56 (2004), 289-308.

Acknowledgements
I am very grateful to the participants pointing out typos and mistakes in my talk, especially K. lima, H. Minamoto, and O. Iyama.

Stanley-Reisner rings and Alexander dual

Stanley-Reisner rings and Alexander dual

$n \in \mathbb{Z}_{+}:=\{k \in \mathbb{Z} \mid k>0\} .[n]:=\{1,2, \ldots, n\}$.

- An (abstract) simplicial complex on $[n]$ is $\Delta \subseteq 2^{[n]}$ s.t.

$$
F \subseteq G \subseteq[n], G \in \Delta \Longrightarrow F \in \Delta
$$

- For a simpl. cpx Δ, we can construct a corresponding geometric simpl. cpx $|\Delta|$, called the geometric realization.

$$
\Delta=\left\{\begin{array}{l}
\{1,2,3\}, \\
\{1,2\},\{1,3\},\{2,3\}, \\
\{2,4\},\{3,4\}, \\
\{1\},\{2\},\{3\},\{4\}, \varnothing
\end{array}\right\}
$$

Stanley-Reisner rings and Alexander dual

- $S:=k\left[x_{1}, \ldots, x_{n}\right]=$ a polynomial ring over a field k, considered as a \mathbb{Z}^{n}-graded algebra with $\operatorname{deg} x_{i}=e_{i}:=(0, \ldots, 0,1,0, \ldots, 0)$.
- For $F \subseteq[n]$,

$$
x_{F}:= \begin{cases}\prod_{i \in F} x_{i} & F \neq \varnothing \\ 1 & F=\varnothing\end{cases}
$$

and hence $\operatorname{deg} x_{F}=e_{F}:=\sum_{i \in F} e_{i}$. Note that $F \subseteq G$ iff $x_{F} \mid x_{G}$ for $F, G \in 2^{[n]}$.

Definition

The (\mathbb{Z}^{n}-graded) ideal of S

$$
\begin{aligned}
I_{\Delta} & :=\left(x_{F} \mid F \in 2^{[n]} \backslash \Delta\right) \\
& =\left(x_{F} \mid F \text { is a min. element of } 2^{[n]} \backslash \Delta\right)
\end{aligned}
$$

and (\mathbb{Z}^{n}-graded k-algebra) $k[\Delta]:=S / I_{\Delta}$ are called the Stanley-Reisner ideal and the Stanley-Reisner ring.

Stanley-Reisner rings and Alexander dual

The minimal non-faces are $\{1,4\}$ and $\{2,3,4\}$.

$$
\begin{aligned}
I_{\Delta} & =\left(x_{1} x_{4}, x_{2} x_{3} x_{4}\right), \\
k[\Delta] & =k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1} x_{4}, x_{2} x_{3} x_{4}\right) .
\end{aligned}
$$

- $\left\{I_{\Delta} \mid \Delta\right.$ is a simpl. cpx. on $\left.\{n\}\right\}=\left\{\begin{array}{l}\text { the ideals generated by } \\ \text { some } x_{F} \text { 's with } F \subseteq[n]\end{array}\right\}$.
- $k[\Delta]$ is designed to satisfy $k[\Delta]_{F}:=k[\Delta]_{e_{F}} \neq 0$ iff $F \in \Delta$, for all $F \subseteq[n]$. Moreover as \mathbb{Z}^{n}-graded k-vector spaces,

$$
k[\Delta]=\bigoplus_{F \in \Delta} k\left[x_{i} \mid i \in F\right] x_{F},
$$

and each $k\left[x_{i} \mid i \in F\right] x_{F}$ is $k\left[x_{i} \mid i \in F\right]$-free.

Stanley-Reisner rings and Alexander dual

Why we do a study on $k[\Delta]$
(1) Applications to enumeration of the number of the faces of $|\Delta|$ (e.g. Upper Bound Theorem and g-theorem).
(2) Interesting interaction among algebraic properties of $k[\Delta]$, combinatorial ones of Δ, and geometric ones of $|\Delta|$.
(3) A remarkable aspect of $k[\Delta]$ in view of homological algebra; e.g. a connection to Koszul duality (or BGG correspondence), detected by K. Yanagawa.

References for (1) and (2):

- W. Bruns and J. Herzog, Cohen-Macaulay rings, 2nd ed., Cambridge Univ. Press, 1998.
- J. Herzog and T. Hibi, Monomial Ideals, Springer, 2011.
- E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2005.
- R. P. Stanley, Combinatorics and Commutative Algebra, Birkhäuser, 1996.

Stanley-Reisner rings and Alexander dual

Definition

An Alexander dual of Δ is a simplicial complex

$$
\begin{aligned}
\Delta^{\vee} & :=\left\{F \subseteq[n] \mid F^{c}:=[n] \backslash F \notin \Delta\right\} \\
& =2^{[n]} \backslash\left\{F \subseteq[n] \mid F^{c} \in \Delta\right\}
\end{aligned}
$$

Stanley-Reisner rings and Alexander dual

Henceforth we set $\mathbf{0}:=(0, \ldots, 0) \in \mathbb{Z}^{n}$ and $\mathbf{1}:=(1, \ldots, 1) \in \mathbb{Z}^{n}$.

Proposition 1

- $\left(\Delta^{\vee}\right)^{\vee}=\Delta$.
- $I_{\Delta v}=\left(x_{F^{c}} \mid F \in \Delta\right)$.
- $\left(I_{\Delta}\right)_{F} \cong k[\Delta]_{F^{c}}$ for all $F \subseteq\{n\}$.
- Ext ${ }_{S}^{i}(k[\Delta], S(-1))_{F} \cong \operatorname{Tor}_{\# F^{c}-i}\left(I_{\Delta^{\vee}}, k\right)_{F^{c}}$ for all i and $F \subseteq[n]$.
- (N . Terai around '99) $\mathrm{pd}_{S}(k[\Delta])=\operatorname{reg}_{S}\left(I_{\Delta^{\vee}}\right)$.
- (J. A. Eagon and V. Reiner '98) $k[\Delta]$ is Cohen -Macaulay iff $I_{\Delta \vee}$ has a linear resolution.

The grade shift $\mathbf{1}$ is the multigraded er. of Gorenstein parameter in the sense that

$$
\operatorname{Ext}_{S}^{i}(k, S(-1)) \cong \begin{cases}k & i=n=\operatorname{dim} S \\ 0 & i \neq n .\end{cases}
$$

Stanley-Reisner rings and Alexander dual

Remark

Throughout the whole slides, every \mathbb{Z}^{n}-graded module M is considered as a \mathbb{Z}-graded one with

$$
M_{i}:=\bigoplus_{\substack{\text { a:= }\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}, \sum_{j=1}^{n}, a_{j}=n}} M_{\mathrm{a}}
$$

for all i.
In the previous proposition, $\mathrm{pd}_{S}(-)$ and $\mathrm{reg}_{S}(-)$ denote projective dimension and Castelnuovo-Mumford regularity (with respect to the \mathbb{Z}-grading stated above).

Stanley-Reisner rings and Alexander dual

Why we call Δ^{\vee} "Alexander dual".
If $\Delta \subseteq \partial 2^{[n]}=2^{[n]} \backslash\{[n]\}$, then

$$
\left|\Delta^{\vee}\right| \underset{\text { homotopy eq. }}{\simeq}\left|\partial 2^{[n]}\right| \backslash|\Delta| .
$$

The previous proposition and the celebrated Hochster's formula for local cohomology modules and Tor modules imply the following Alexander duality in the usual sense:

$$
\widetilde{H}^{i}(|\Delta| ; k) \cong \widetilde{H}_{(n-2)-i-1}\left(\left|\Delta^{\vee}\right| ; k\right) \cong \widetilde{H}_{(n-2)-i-1}\left(\left|\partial 2^{[n]}\right| \backslash|\Delta| ; k\right)
$$

for all i.

Squarefree modules

Squarefree modules

Note that $S(-F):=S\left(-e_{F}\right) \cong S x_{F}$ is a free left S-module for $F \subseteq[n]$.

Definition (K. Yanagawa '00)

$M \in S-\mathrm{gr}_{\mathbb{Z}^{n}}$ is called squarefree iff the one of (hence all of) the following equivalent conditions:
(1)

$$
\exists \bigoplus_{j=1}^{q} S x_{G_{j}} \longrightarrow \bigoplus_{i=1}^{p} S x_{F_{i}} \longrightarrow M \longrightarrow 0 \quad(\mathrm{ex})
$$

where $F_{i}, G_{j} \subseteq[n]$ and $p, q \in \mathbb{Z}_{+}$.
(2) $M=\bigoplus_{\mathrm{a} \in \mathbb{Z}_{\geq 0}^{n}} M_{\mathrm{a}}$ and

$$
M_{\mathbf{a}} \ni m \longmapsto x_{i} m \in M_{\mathbf{a}+\mathbf{e}_{i}}
$$

is k-isomorphic for $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $i \in[n]$ with $a_{i} \geq 1$.

Squarefree modules

Henceforth S-Sq :=\{Squarefree left S-modules $\} \underset{\text { full sub. }}{\subset} S$ - $r_{\mathbb{Z}^{n}}$.
The condition (2) says that $M \in S-\mathrm{Sq}$ is completely determined by its squarefree part

$$
M_{[0,1]}:=\bigoplus_{F \subseteq[n]} M_{F} .
$$

Example 1

$k[\Delta]$ and I_{Δ} are squarefree; Indeed they have the following decomposition

$$
k[\Delta]=\bigoplus_{F \in \Delta} k\left[x_{i} \mid i \in F\right] x_{F}, \quad I_{\Delta}=\bigoplus_{F \in 2^{[m]} \backslash \Delta} k\left[x_{i} \mid i \in F\right] x_{F} .
$$

I_{Δ} / I_{Γ} is also squarefree for simpl. cpxes Δ, Γ with $\Delta \subseteq \Gamma$.

Squarefree modules

Proposition 2

(1) S-Sq is closed under extensions, Ker, Coker; In particular it is abelian. Moreover it has enough projectives and enough injectives.
(2) The indecomposable projective (resp. injective) objects are just $S x_{F} \cong S(-F)\left(\right.$ resp. $\left.S / \mathfrak{p}_{F}=k\left[x_{i} \mid i \in F\right]\right)$ with $F \subseteq[n]$, up to isom, where $\mathfrak{p}_{F}:=\left(x_{i} \mid i \in F^{c}\right)$.

Let T denote the complex shift functor. Set

$$
\omega:=T^{n}(S(-\mathbf{1})) \in D^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right)
$$

The localization $\omega_{\mathfrak{p}_{\varnothing}}$ at the graded maximal ideal $\mathfrak{p}_{\varnothing}=\left(x_{1}, \ldots, x_{n}\right)$ is then the normalized dualizing complex of S, and the functor

$$
\mathscr{D} S:=\operatorname{RHom}(-, \omega): D^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right) \rightarrow D^{b}\left(\mathrm{gr}_{\mathbb{Z}^{n}} S\right) \cong D^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right)
$$

is a duality on $D^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right)$, and hence $\mathscr{D}_{S}^{2} \cong \mathrm{id}_{D^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right)}$.

Squarefree modules

Because

- A projective resolution P^{\bullet} of $M \in S$-Sq in S-Sq consists of $S x_{F} \cong S(-F)$ for some $F \in[n]$, which is also projective in $S-\mathrm{gr}_{\mathbb{Z}^{n}}$,

we see

Proposition 3

(1) $D^{b}(S-S q) \cong D_{S-S q}^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right) \underset{\text { full sub. }}{\subset} D^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right)$.
(2) \mathscr{D}_{S} is (more precisely induces) a duality on $D^{b}(S-S q)$.

Squarefree modules

The cpx $\omega=T^{n}(S(-\mathbf{1}))$ has the following injective resolution $D^{\bullet}(S)$ in $D^{b}(S-S q)$:

$$
\begin{aligned}
0 \rightarrow D^{-n}(S)=S \rightarrow \cdots \rightarrow D^{p}(S):= & \bigoplus_{\substack{F \subseteq[n], \# F=-p}} S / \mathfrak{p}_{F} \\
& \rightarrow \cdots \rightarrow D^{0}(S)=S / \mathfrak{p}_{\varnothing} \rightarrow 0,
\end{aligned}
$$

where

$$
D^{p}(S) \supset S / \mathfrak{p}_{F} \ni 1 \mapsto \sum_{i \in F} \pm 1 \in S / \mathfrak{p}_{F \cup i} \subset D^{p+1}(S)
$$

In conjunction with the following (non-trivial) natural isom.

$$
\underline{\operatorname{Hom}}_{S}\left(M, S / \mathfrak{p}_{F}\right)_{\geq 0} \cong \underline{\operatorname{Hom}}_{k}\left(M_{F}, k\right)(-F) \underline{\otimes}_{k} S / \mathfrak{p}_{F}\left(\cong\left(S / \mathfrak{p}_{F}\right)^{\operatorname{dim}_{k} M_{F}}\right),
$$

in $\mathrm{Sq}-S$ for $M \in S-S q$, we have

Squarefree modules

Proposition 4

For $M \in D^{b}(S-S q)$, the $\mathrm{cpx} \mathscr{D}_{S}(M) \cong \mathscr{D}_{S}(M)_{\geq 0}$ is qis to the cpx $D^{\bullet}(M)$ defined as follows;

$$
D^{p}(M):=\bigoplus_{\substack{i \in \mathbb{Z}, F \subseteq[n], p=-i-\# F}} \underline{\operatorname{Hom}}_{k}\left(M_{F}^{i}, k\right)(-F) \underline{\otimes}_{k} S / \mathfrak{p}_{F}
$$

and the differential map is given as

$$
f \otimes x \mapsto(-1)^{p}\left(\partial_{M}^{i} \circ f\right) \otimes x+f \otimes \partial_{D^{\bullet}(S)}^{p+i}(x)
$$

for $f \otimes x \in \operatorname{Hom}_{k}\left(M_{F}, k\right)(-F) \underline{\otimes}_{k} S / \mathfrak{p}_{F}$ with $p=-i-\# F$.

Squarefree modules

- In his paper [Math. Res. Lett. 10 (2003)], Yanagawa constructed a sheaf M^{+}of M on $\left|2^{[n]}\right|$ with values in k.
- The construction allowed him to generalize Hochster's formula for local cohomology modules stated above, and furthermore to detect a relation between the local duality and the Poincaré-Verdier duality through $M \rightarrow M^{+}$.
- See loc. cit. for details.

Generalized Alexander duality

Generalized Alexander duality

Let E be the exterior algebra of $\operatorname{Hom}_{k}\left(S_{1}, k\right)$ over k and y_{i} be the k-dual base of x_{i}. Set $\operatorname{deg}\left(y_{i}\right):=e_{i}$ and

$$
y_{F}:= \begin{cases}y_{i_{1}} \wedge y_{i_{2}} \wedge \cdots \wedge y_{i_{s}} & \text { if } F=\left\{i_{1}, \ldots, i_{s}\right\} \subseteq[n] \text { with } i_{1}<\cdots<i_{s}, \\ 1 & \text { if } F=\varnothing .\end{cases}
$$

Definition (T. Römer '01)

$N \in E-\mathrm{gr}_{\mathbb{Z}^{n}}$ is called squarefree iff it satisfies the one of (hence all of) the following equivalent conditions:
(1)

$$
\exists \bigoplus_{j=1}^{q} E y_{G_{j}} \longrightarrow \bigoplus_{i=1}^{p} E y_{F_{i}} \longrightarrow N \longrightarrow 0
$$

where $F_{i}, G_{j} \subseteq[n]$ and $p, q \in \mathbb{Z}_{+}$.
(2) $N=\bigoplus_{F \subseteq[n]} N_{F}$, where $N_{F}:=N_{e_{F}}$.

Generalized Alexander duality

Set E-Sq $:=\{$ squarefree left E-modules $\} \underset{\text { full sub. }}{\subset} E-\mathrm{gr}_{\mathbb{Z}^{n}}$.

Example 2

For a simpl. cpx Δ on [n],

$$
J_{\Delta}:=E\left\langle y_{F} \mid F \in 2^{[n]} \backslash \Delta\right\rangle E, \quad k\langle\Delta\rangle:=E / J_{\Delta}
$$

are squarefree.

Proposition 5

E-Sq is closed under extensions, Ker, Coker; In particular it is abelian. Moreover it has enough projectives and enough injectives.

Generalized Alexander duality

- For $M \in S$-Sq with $\oplus_{j=1}^{q} S x_{G_{j}} \xrightarrow{f} \bigoplus_{i=1}^{p} S x_{F_{i}} \rightarrow M \rightarrow 0$, where

$$
f\left(x_{G_{j}}\right)=\sum_{\substack{1 \leq i \leq p, F_{i} \subseteq G_{j}}} k_{j i} x_{F_{i} \backslash G_{j}} x_{G_{j}}, \quad k_{j i} \in k,
$$

let M_{E} be the cokernel of the map $\bigoplus_{j=1}^{q} E y_{G_{j}} \xrightarrow{f_{G}} \bigoplus_{i=1}^{p} E y_{F_{i}}$ defined by

$$
f_{E}\left(y y_{G_{j}}\right)=\sum_{\substack{1 \leq i \leq p, F_{i} \subseteq G_{j}}} \pm k_{j i} y y_{G_{j} \backslash F_{i}} y_{F_{i}},
$$

where \pm is chosen to satisfy $\pm y_{G_{j} \backslash F_{i}} y_{F_{i}}=y_{G_{j}}$.

- The module M_{E} is then squarefree and unique up to isom. in $E-\mathrm{gr}_{\mathbb{Z}^{n}}$ and assignment $M \rightarrow M_{E}$ gives rise to a functor $\mathcal{E}: S$-Sq $\rightarrow E$-Sq.
- Similarly we have a functor $\mathcal{S}: E-\mathrm{Sq} \rightarrow S$-Sq.

Generalized Alexander duality

Theorem 1 (T. Römer, '01)

The pair of functors $(\mathcal{S}, \mathcal{E})$ is an equivalence between S-Sq and E-Sq.

- $\mathcal{E}(M)_{F} \cong M_{F}$ for all $F \subseteq[n]$ and $M \in S$-Sq;
- In particular

$$
\mathcal{E}(M) \cong \bigoplus_{F \subseteq[n]} M_{F}
$$

as \mathbb{Z}^{n}-graded k-vector spaces.

- $\mathcal{E}(k[\Delta]) \cong k\langle\Delta\rangle$ and $\mathcal{E}\left(I_{\Delta}\right) \cong J_{\Delta}$ for any simpl. cpx Δ on $[n]$.

Generalized Alexander duality

- Any $N \in \operatorname{gr}_{\mathbb{Z}^{n}}-E$ equipped with the structure of a left E-module with $y n=(-1)^{|y||n|} n y$ for homogeneous $y \in E$ and $n \in N$, where $|y|$ and $|n|$ denote the \mathbb{Z}-degrees of y and n.
- Let $\tau_{E}: \mathrm{gr}_{\mathbb{Z}^{n}}-E \rightarrow E$ - $\mathrm{gr}_{\mathbb{Z}^{n}}$ be the functor induced from the observation above.
- Since E is injective, we have the duality $\mathcal{D}_{E}:=\underline{\operatorname{Hom}}_{E}(-, E)$ and hence the autofunctor $\tau_{E} \mathcal{D}_{E}$ on $E-\mathrm{gr}_{\mathbb{Z}^{n}}$.

Theorem 2 (T. Römer '01)
(1) $\tau_{E} \mathcal{D}_{E}(N) \in E-S q$ for $N \in E-S q$ and hence the functor $\mathcal{A}:=\mathcal{S} \tau_{E} \mathcal{D}_{E} \mathcal{E}$ is a duality on S-Sq.
(2) Furthermore \mathcal{A} is a "generalized Alexander duality" in the sense that

$$
\mathcal{A}(k[\Delta]) \cong I_{\Delta v}
$$

for any simpl. cpx Δ on [n].

Generalized Alexander duality

Generalized Alexander duality

- Independently E. Miller also constructed a generalized Alexander duality of $M \in S$-Sq. According to his construction, $\mathcal{A}(M)$ is the squarefree module, unique up to isomorphism, satisfying

$$
\mathcal{A}(M) / \mathcal{A}(M)_{>1} \cong\left(\operatorname{Hom}_{k}(M, k)(-1)\right)_{\geq 0} .
$$

- Actually his construction is valid for positively t-determined modules, a generalization of squarefree modules by him.

Generalized Alexander duality

Proposition 6 (E. Miller '00, T. Römer '01)
Let $M \in S$-Sq.
(1) $\mathcal{A}(M)_{F} \cong M_{F^{c}}$ for all $F \subseteq[n]$.
(2) $\operatorname{Ext}_{S}^{i}(M, S(-1))_{F} \cong \operatorname{Tor}_{\# F^{c}-i}(\mathcal{A}(M), k)_{F^{c}}$ for all i and $F \subseteq[n]$.
(3) $\operatorname{pd}_{S}(M)=\operatorname{reg}_{S}(\mathcal{A}(M))$.
(4) M is CM iff $\mathcal{A}(M)$ has a linear resolution.

Alexander duality and Koszul duality (BGG correspondence)

Alexander duality and Koszul duality (BGG correspondence)

Proposition 7

$$
D^{b}(E-S q) \cong D_{E-S q}^{b}\left(E-\mathrm{gr}_{\mathbb{Z}^{n}}\right) \underset{\text { full sub. }}{\subset} D^{b}\left(E-\mathrm{gr}_{\mathbb{Z}^{n}}\right) .
$$

- S and E are Koszul and $E^{!}=S$.
- Moreover E is of finite dimension over k and S is noetherian.
- By considering \mathbb{Z}^{n}-grading instead of \mathbb{Z}-grading in Koszul duality between S and E, we obtain the following.

Proposition 8

We have the equivalences $\mathscr{F}: D^{b}\left(E-\mathrm{gr}_{\mathbb{Z}^{n}}\right) \rightarrow D^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right)$ and $\mathscr{G}: D^{b}\left(S-\mathrm{gr}_{\mathbb{Z}^{n}}\right) \rightarrow D^{b}\left(E-\mathrm{gr}_{\mathbb{Z}^{n}}\right)$.

Alexander duality and Koszul duality (BGG correspondence)

Let $\mathscr{S}, \mathscr{E}, \mathscr{A}$ be the functors induced from $\mathcal{S}, \mathcal{E}, \mathcal{A}$ between corresponding bounded derived categories, and $\sigma^{\mathbf{a}}$ the grade shift functor for $\mathbf{a} \in \mathbb{Z}^{n}$.

Theorem 3 (K. Yanagawa '04)

(1) The functor $\sigma^{\mathbf{- 1}} \mathscr{F}$ induces the one $\sigma^{-\mathbf{1}} \mathscr{F}: D^{b}(E-\mathrm{Sq}) \rightarrow D^{b}(S-\mathrm{Sq})$.
(2) The functor $\mathscr{G} \sigma^{1}$ induces the one $\mathscr{G} \sigma^{1}: D^{b}(S-S q) \rightarrow D^{b}(E-S q)$.
(3) $\sigma^{-1} \mathscr{F} \mathscr{E} \cong \mathscr{A} \mathscr{D}_{S}$ and $\mathscr{S} \mathscr{G} \sigma^{1} \cong \mathscr{D} S \mathscr{A}$.

Alexander duality and Koszul duality (BGG correspondence)

$D^{b}(E-\mathrm{Sq}) \xrightarrow{\sigma^{-1} \mathscr{F}} D^{b}(S-\mathrm{Sq})$

$$
\left.\right|_{D^{b}(S-S q)} ^{D_{\mathscr{D} \mathscr{A}}^{b}(S-S q)} \xrightarrow{\mathscr{C} \sigma^{1}} D^{b}(E-S q)
$$

Alexander duality and Koszul duality (BGG correspondence)

Sketch of proof
Let $M \in D^{b}(S-S q)$ and set $N:=\mathscr{E}(M)$. By Prop. 4,

$$
\begin{aligned}
\mathscr{D}_{S}(M)^{p} & =\bigoplus_{\substack{F \subseteq[n], p=i-\# F}} \operatorname{Hom}_{k}\left(M_{F}^{i}, k\right)(-F) \underline{\otimes}_{k} S / \mathfrak{p}_{F} \\
& \cong \bigoplus_{\substack{F \subseteq[n], p=-i-\# F}} S / \mathfrak{p}_{F}^{\operatorname{dim}_{k} M_{F}^{i}} .
\end{aligned}
$$

Because $\mathcal{A}\left(S / \mathfrak{p}_{F}\right) \cong S_{X^{c}} \cong S\left(-F^{c}\right)$, it follows that

$$
\begin{aligned}
\sigma^{1} \mathscr{A} \mathscr{D}_{S}(M)^{p} & \cong\left(\bigoplus_{\substack{F \subseteq[n], p \in i+\# F}} S\left(-F^{c}\right) \otimes_{k} M_{F}^{i}(F)\right) \\
& \cong \bigoplus_{\substack{F \subseteq[n], p=i+\# F}} S(F) \otimes_{k} M_{F}^{i}(F) .
\end{aligned}
$$

Alexander duality and Koszul duality (BGG correspondence)

Since $N^{i} \in E-S q$ and $M_{F}^{i} \cong N_{F}^{i}$ for all $F \subseteq[n]$,

$$
\begin{aligned}
\mathscr{F} \mathscr{E}(M)^{p} & =\bigoplus_{\mathbf{a} \in \mathbb{Z}^{n}}\left(\bigoplus_{p=i+|\mathbf{b}|} S_{\mathbf{a}+\mathbf{b}} \otimes_{k} N_{\mathbf{b}}^{i}\right) \\
& =\bigoplus_{\substack{p=i+|\mathbf{b}|}} S(\mathbf{b}) \otimes_{k} N_{\mathbf{b}}^{i}(\mathbf{b}) \\
& =\bigoplus_{\substack{F \subseteq[n], p=i+|F|}} S(F) \underline{\otimes}_{k} N_{F}^{i}(F) \\
& \cong \bigoplus_{\substack{F \subseteq[n], p=i+|F|}} S(F) \underline{\otimes}_{k} M_{F}^{i}(F)=\sigma^{1} \mathscr{A} \mathscr{D}_{S}(M)^{p} .
\end{aligned}
$$

Relation to Calabi-Yau property

Relation to Calabi-Yau property

Recall that T denote the translation functor.
Theorem 4 (K. Yanagawa '04)
$\left(\mathscr{A} \mathscr{D}_{S}\right)^{3} \cong T^{-2 n}$.

For example, because

$$
\begin{array}{ll}
\mathscr{A}(S(-F)) \cong S / \mathfrak{p}_{F^{c}}, & \mathscr{A}\left(S / \mathfrak{p}_{F}(-F)\right) \cong S / \mathfrak{p}_{F^{c}}\left(-F^{c}\right), \\
\mathscr{D}_{S}(S(-F)) \cong T^{n}\left(S\left(-F^{c}\right)\right), & \mathscr{D}_{S}\left(S / \mathfrak{p}_{F}\right) \cong T^{\# F}\left(S / \mathfrak{p}_{F}(-F)\right), \\
\mathscr{D}_{S}\left(S / \mathfrak{p}_{F}(-F)\right) \cong T^{\# F}\left(S / \mathfrak{p}_{F}\right) &
\end{array}
$$

for $F \subseteq[n]$, it follows that

Relation to Calabi-Yau property

$$
\begin{aligned}
(\mathscr{A} \mathscr{D} S)^{3}(S(-F)) & \cong(\mathscr{A} \mathscr{D})^{2} \mathscr{A}\left(T^{n}\left(S\left(-F^{c}\right)\right)\right) \\
& \cong T^{-n}(\mathscr{A} \mathscr{D})^{2}\left(S / \mathfrak{p}_{F}\right) \\
& \cong T^{-n}(\mathscr{A} \mathscr{D}) \mathscr{A}\left(T^{\# F} S / \mathfrak{p}_{F}(-F)\right) \\
& \cong T^{-n-\# F \mathscr{A} \mathscr{D}\left(S / \mathfrak{p}_{F^{c}}\left(-F^{c}\right)\right)} \\
& \cong T^{-n-\# F \mathscr{A}\left(T^{\# F^{c}}\left(S / \mathfrak{p}_{F^{c}}\right)\right)} \\
& \cong T^{-n-\# F-\# F^{c}} \mathscr{A}\left(S / \mathfrak{p}_{F^{c}}\right) \cong T^{-2 n}(S(-F))
\end{aligned}
$$

for all $F \subseteq[n]$.

- Actually, $S-S q$ is equivalent to the category of left modules over the tensor of n-copies of the path algebra of the quiver of type A_{2}.
- As a result, The natural isomorphism $(\mathscr{A} \mathscr{D} S)^{3} \cong T^{-2 n}$ can be deduced from the fact that the category above is fractionally Calabi-Yau of dimension n/3 (Suggestion of O. Iyama to Yanagawa around 2007).

Relation to Calabi-Yau property

Let Λ_{d} be the path algebra of the following quiver of type A_{d+1}.

- Note that the k-basis of Λ_{1} consists of $e_{0,0}:=e_{0}, e_{1,1}:=e_{1}, e_{1,0}$.
- Set $\Lambda:=\Lambda_{1}^{\otimes k n}$ and

$$
e_{G F}:=e_{\chi_{G}(1), \chi_{F}(1)} \otimes_{k} \cdots \otimes_{k} e_{\chi_{G}(n), \chi_{F}(n)}
$$

for $F \subseteq G \subseteq[n]$, where χ_{F}, χ_{G} denote the characteristic function.

- The k-basis of Λ then consists of all the $e_{G F}$ with $F \subseteq G \subseteq[n]$, and

$$
e_{I H} e_{G F}=\left\{\begin{array}{ll}
0 & G \neq H, \\
e_{I F} & H=G
\end{array} \quad \text { for } F \subseteq G \subseteq[n] \text { and } H \subseteq I \subseteq[n] .\right.
$$

Relation to Calabi-Yau property

- For $M \in S$-Sq, the squarefree part $M_{[0,1]}:=\bigoplus_{F \subseteq[n]} M_{F}$ has the structure of a left Λ-module with the scalar multiplication

$$
e_{G F} m=\left\{\begin{array}{ll}
x_{G \backslash F} m & F=H, \\
0 & F \neq H
\end{array} \quad\left(F \subseteq G \subseteq[n], H \subseteq[n], m \in M_{H}\right) .\right.
$$

- Moreover the k-linear map $M_{[0,1]} \rightarrow N_{[0,1]}$ induced from a morphism $M \rightarrow N$ in S-Sq is then Λ-linear.
- Thus we have the functor $\Phi_{\Lambda}: S-S q \rightarrow \Lambda$-mod.

Proposition 9 (K. Yanagawa '04)

The functor Φ_{Λ} is equivalence.

Relation to Calabi-Yau property

Example 3

$\Phi_{\Lambda}\left(I_{\Delta}\right)=\Lambda\left\{e_{F \varnothing} \mid F \notin \Delta\right\}$ for a simpl. cpx Δ on [n]; In particular

$$
\Phi_{\Lambda}\left(S x_{F}\right) \cong \Lambda e_{F}, \quad \Phi_{\Lambda}(k[\Delta]) \cong \Lambda e_{\varnothing} / \Lambda\left\{e_{F \varnothing} \mid F \in \Delta\right\},
$$

where $e_{G}=e_{G G}$ for $G \subseteq[n]$.

- Let Φ_{S} be the inverse of Φ_{Λ}. The functor between $D^{b}(S-S q)$ and $D^{b}\left(\Lambda\right.$-mod) induced from Φ_{S}, Φ_{Λ} are also denoted by them.
- Set $\mathscr{D}_{k}:=\operatorname{RHom}_{k}(-, k)$ and $\mathscr{D}_{\Lambda}:=\operatorname{RHom}_{\wedge}(-, \Lambda)$.
- Let $\tau_{\Lambda}: D^{b}(\bmod -\Lambda) \rightarrow D^{b}(\Lambda-\bmod)$ be the equivalence induced from the ring isomorphism $\Lambda \ni e_{G F} \mapsto e_{F^{c}} G^{c} \in \Lambda^{\circ p}$, where $\Lambda^{\text {op }}$ denote the opposite ring of Λ.

Relation to Calabi-Yau property

Theorem 5 (K. Yanagawa '04)

$\Phi_{S} \tau_{\wedge} \mathscr{D}_{k} \Phi_{\Lambda} \cong \mathscr{A}$ and $\Phi_{S} \tau_{\Lambda} \mathscr{D}_{\Lambda} \Phi_{\Lambda} \cong T^{-n} \mathscr{D}_{S}$.

$$
\underset{D^{b}(\Lambda-\bmod)}{\mid \Phi_{\Lambda}} \xrightarrow{\tau_{\Lambda} \mathscr{D}_{k}} D^{b}(\Lambda-\bmod)
$$

$$
D^{b}(S-S q) \xrightarrow{T^{-n} \mathscr{D}_{S}} D^{b}(S-S q)
$$

$$
\underset{D^{b}(\Lambda-\mathrm{mod})}{\mid \Phi_{\Lambda}} \xrightarrow{\tau_{\Lambda} \mathscr{D}_{\Lambda}} \Phi^{b} D^{b}(\Lambda-\mathrm{mod}) .
$$

In particular, $\mathscr{A} \mathscr{D}_{S} \cong T^{-n} \Phi_{S} \mathscr{D}_{k} \mathscr{D}_{\Lambda} \Phi_{\Lambda}$.

Relation to Calabi-Yau property

Let \mathcal{T} be a k-linear triangulated category with $\operatorname{dim}_{k} \operatorname{Hom}_{\mathcal{T}}(X, Y)<\infty$ for all $X, Y \in \mathcal{T}$. Let n, d be positive integers.

- A k-linear autofunctor F on \mathcal{T} is said to be a Serre functor if there exists a k-linear isomorphism

$$
\operatorname{Hom}_{\mathcal{T}}(Y, F(X)) \cong \operatorname{Hom}_{k}\left(\operatorname{Hom}_{\mathcal{T}}(X, Y)\right)
$$

functorial in $X, Y \in \mathcal{T}$ for all $X, Y \in \mathcal{T}$.

- \mathcal{T} is said to be fractionally Calabi-Yau of dimension n / d (abbrev. $n / d-C Y$) if it has a Serre functor and there exists an isomorphism of k-linear functors $F^{d} \cong T^{n}$.

Relation to Calabi-Yau property

Proposition 10 (D. Happel)

For a finite-dimensional k-algebra A of finite global dimension,

$$
\mathscr{D}_{k} \mathscr{D}_{A} \cong \mathscr{D}_{k}(A) \stackrel{\otimes}{A}_{A}-: D^{b}(A-\bmod) \rightarrow D^{b}(A-\mathrm{mod})
$$

is a Serre functor, where $\mathscr{D}_{A}:=\operatorname{RHom}_{A}(-, A)$.

Proposition 11 (M. Herschend and O. Iyama '11)

Let $A_{i}(i=1,2)$ be finite-dimensional k-algebra of finite global dimension. Assume $A_{1} \otimes_{k} A_{2}$ is also of finite global dimension, and $D^{b}\left(A_{1}\right.$-mod) $\left(\right.$ resp. $D^{b}\left(A_{2}-\right.$ mod $\left.)\right)$ is $m_{1} / l_{1}-C Y\left(\right.$ resp. $\left.m_{2} / l_{2}-C Y\right)$. Then $D^{b}\left(A_{1} \otimes_{k} A_{2}\right.$-mod) is m / I-CY, where $I=\operatorname{lcm}\left(I_{1}, l_{2}\right)$ and $m=I\left(\left(m_{1} l_{2}+l_{1} m_{2}\right) /\left(I_{1} l_{2}\right)\right)$.

Relation to Calabi-Yau property

Proposition 12 (M. Kontsevich and E. Kreines)

The category $D^{b}\left(\Lambda_{d}\right.$-mod) is Calabi-Yau of dimension $d /(d+2)$.

- Since Λ_{d} is finite-dimensional k-algebra of finite global dimension, the functor $\mathscr{D}_{k} \mathscr{D}_{\Lambda_{d}}$ is a Serre functor.
- $\Lambda=\Lambda_{1}^{\otimes k n}$ is of finite global dimension, since Λ-mod $\cong S$-Sq.
- Consequently, we see that $\mathscr{D}_{k} \mathscr{D}_{\Lambda}$ is also a Serre functor and $D^{b}(\Lambda-\mathrm{mod})$ is Calabi-Yau of dimension $n / 3$.

Corollary 1 (O. Iyama around '07)

The isomorphism $\left(\mathscr{A}_{\mathscr{D}_{S}}\right)^{3} \cong T^{-2 n}$ is deduced from the fact that $D^{b}(\bmod -\Lambda)$ is Calabi-Yau of dimension $n / 3$.

Indeed

$$
\left(\mathscr{A} \mathscr{D}_{S}\right)^{3} \cong T^{-3 n} \Phi_{S}\left(\mathscr{D}_{k} \mathscr{D}_{\Lambda}\right)^{3} \Phi_{\Lambda} \cong T^{-2 n} .
$$

Relation to Calabi-Yau property

Remark

According to the paper [Compos. Math. 129 (2001)] of J. Miyachi and A. Yekutieli, Proposition 12 was already proved by E. Kreines and had been known also to M. Kontsevich.

Further developments

Further developments

Let $\mathbf{t}:=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{Z}^{n}$ with $t_{i} \geq 1$ for all i, and define

$$
\mathbf{a}:=\left(a_{1}, \ldots, a_{n}\right) \leq \mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right) \Longleftrightarrow \forall i, a_{i} \leq b_{i}
$$

Definition (E. Miller '00)

$M \in S$ - $\mathrm{gr}_{\mathbb{Z}^{n}}$ is said to be positively t -determined if it satisfies one of (hence all of) the following equivalent conditions:
(1) $\exists \bigoplus_{j=1}^{q} S\left(-\mathbf{b}_{i}\right) \longrightarrow \bigoplus_{i=1}^{p} S\left(-\mathbf{a}_{i}\right) \longrightarrow M \longrightarrow 0$ with $\mathbf{0} \leq \mathbf{a}_{i} \leq \mathbf{t}$ and $\mathbf{0} \leq \mathbf{b}_{j} \leq \mathbf{t}$ for all i, j.
(2) $M=\bigoplus_{\mathbf{a} \in \mathbb{Z}_{\geq 0}^{n}} M_{\mathbf{a}}$ and the map

$$
M_{\mathbf{a}} \ni m \mapsto x_{i} m \in M_{\mathbf{a}+e_{i}}
$$

is isomorphic for $\mathbf{a} \in \mathbb{Z}^{n}$ and i with $a_{i} \geq t_{i}$.

Further developments

- A pos. 1-det. module is just a squarefree module.
- Miller defined the Alexander duality functor \mathcal{A}_{t} on the category $S-\mathrm{Sq}_{\mathbf{t}}=\{$ pos. $\mathbf{t - d e t}$. modules $\} \underset{\text { full sub. }}{\subset} S-\mathrm{gr}_{\mathbb{Z}^{n}}$.
- $\mathscr{D}_{\mathbf{t}}:=\operatorname{RHom}_{S}\left(-, T^{n} S(-\mathbf{t})\right)$ is a duality on $S-\mathrm{Sq}_{\mathbf{t}}$.
- $\mathscr{A}_{1}=\mathscr{A}$ and $\mathscr{D}_{1}=\mathscr{D}_{S}$.
- Most of results stated in this lecture can be generalized to pos. t-det. modules.
- See Miller's paper [J. Algebra 231 (2000)] for details of basic properties,
- and the one [Adv. Math. 226 (2011)] by M. Brun and G. Fløystad for the functor $\mathscr{A}_{\mathbf{t}} \mathscr{D}_{\mathbf{t}}$.

Thank you for your attention.

