THE EXISTENCE OF BALANCED NEIGHBORLY POLYNOMIALS

Nguyen Thi Thanh Tam - Hung Vuong University

Join work with Professor Satoshi Murai

The 43rd Japan Symposium on Commutative Algebra, Osaka-Japan, November 14-18, 2022

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Introduction and motivation
- Main results

• Δ is simplicial complex if nonempty collection of subsets of $[n] = \{1, 2, ..., n\}$ s.t $F \in \Delta$ and $G \subset F$ imply $G \in \Delta$.

- Δ is simplicial complex if nonempty collection of subsets of $[n] = \{1, 2, ..., n\}$ s.t $F \in \Delta$ and $G \subset F$ imply $G \in \Delta$.
- Elements of Δ are called *faces* of Δ and maximal faces are called *facets*.

- Δ is simplicial complex if nonempty collection of subsets of $[n] = \{1, 2, ..., n\}$ s.t $F \in \Delta$ and $G \subset F$ imply $G \in \Delta$.
- Elements of Δ are called *faces* of Δ and maximal faces are called *facets*.
- dimF = |F| − 1: The dimension of a face F ∈ Δ, dimΔ = max{dimF | F ∈ Δ}: The dimension of Δ,

- Δ is simplicial complex if nonempty collection of subsets of $[n] = \{1, 2, ..., n\}$ s.t $F \in \Delta$ and $G \subset F$ imply $G \in \Delta$.
- Elements of Δ are called *faces* of Δ and maximal faces are called *facets*.
- dimF = |F| − 1: The dimension of a face F ∈ Δ, dimΔ = max{dimF | F ∈ Δ}: The dimension of Δ,
- Faces of dimension 0 are called *vertices* and faces of dimension 1 are called *edges*.

Introduction and motivation

Example

 $\dim \Delta_1 = 1$, $\dim \Delta_2 = 2$

• Δ : (d-1)-dimensional simplicial complex on $[n] = \{1, 2, ..., n\}$.

э

Δ: (d - 1)-dimensional simplicial complex on [n] = {1,2,...,n}.
R = K[x₁,...,x_n]: polynomial ring over an infinite field K.

Δ: (d − 1)-dimensional simplicial complex on [n] = {1,2,...,n}.
R = K[x₁,...,x_n]: polynomial ring over an infinite field K.
I_Δ = (∏_{i∈F} x_i | F ⊂ [n], F ∉ Δ): Stanley-Reisner Ideal of R.

- Δ : (d-1)-dimensional simplicial complex on $[n] = \{1, 2, ..., n\}$.
- $R = K[x_1, ..., x_n]$: polynomial ring over an infinite field K.
- $I_{\Delta} = (\prod_{i \in F} x_i \mid F \subset [n], F \notin \Delta)$: Stanley-Reisner Ideal of *R*.
- $K[\Delta] = R/I_{\Delta}$: the Stanley-Reisner ring of Δ .

- Δ : (d-1)-dimensional simplicial complex on $[n] = \{1, 2, ..., n\}$.
- $R = K[x_1, ..., x_n]$: polynomial ring over an infinite field K.
- $I_{\Delta} = (\prod_{i \in F} x_i \mid F \subset [n], F \notin \Delta)$: Stanley-Reisner Ideal of *R*.
- $K[\Delta] = R/I_{\Delta}$: the Stanley-Reisner ring of Δ .
- $\dim K[\Delta] = \dim \Delta + 1$

Example

 $I_{\Delta_1} = (x_1 x_3, x_2 x_4), \dim K[\Delta_1] = 2$ $I_{\Delta_2} = (x_1 x_3, x_1 x_4, x_3 x_5, x_2 x_3 x_4), \dim K[\Delta_2] = 3$

• A map $\kappa : [n] \to [d]$ is called a proper coloring map of Δ , if we have $\kappa(i) \neq \kappa(j)$ for any edge $\{i, j\} \in \Delta$.

э

- A map $\kappa : [n] \to [d]$ is called a proper coloring map of Δ , if we have $\kappa(i) \neq \kappa(j)$ for any edge $\{i, j\} \in \Delta$.
- A (d-1)-dimensional simplicial complex Δ on [n] is *balanced*, if its graph is *d*-colorable.

- A map $\kappa : [n] \to [d]$ is called a proper coloring map of Δ , if we have $\kappa(i) \neq \kappa(j)$ for any edge $\{i, j\} \in \Delta$.
- A (d-1)-dimensional simplicial complex Δ on [n] is *balanced*, if its graph is *d*-colorable.

We have $\dim \Delta_1 = 1$, $\dim \Delta_3 = 1$. Then Δ_1 is a balanced complex. Δ_3 is not a balanced complex.

Simplicial spheres

A *simplicial sphere* is a simplicial complex which is homeomorphic to a sphere.

э

글 🖌 🖌 글 🕨

Simplicial spheres

A *simplicial sphere* is a simplicial complex which is homeomorphic to a sphere.

We have Δ_1 is simplicial sphere, but Δ_2 is not simplicial sphere

System of parameters of simplicial complex

• If ${\rm dim} K[\Delta]=d$ and a sequence Θ of linear forms such that

 $\dim_K K[\Delta]/(\Theta) < \infty$

is called a *linear system of parameters* (l.s.o.p. for short) of $K[\Delta]$.

System of parameters of simplicial complex

• If $\dim K[\Delta] = d$ and a sequence Θ of linear forms such that

 $\dim_K K[\Delta]/(\Theta) < \infty$

is called a *linear system of parameters* (l.s.o.p. for short) of $K[\Delta]$. • Set $V_k = \{v \in [n] \mid \kappa(v) = k\}$. Let $\theta_k = \sum_{v_k \in V_k} x_{v_k}$, for k = 1, 2, ..., d. Then $\Theta = \theta_1, ..., \theta_d$ is a l.s.o.p of $K[\Delta]$.

Example

We have $\Theta_1 = (x_1 + x_3, x_2 + x_4) \Rightarrow \dim_K K[\Delta_1]/(\Theta_1) = 2.$

10/24

Example

We have $\Theta_1 = (x_1 + x_3, x_2 + x_4) \Rightarrow \dim_K K[\Delta_1]/(\Theta_1) = 2.$ We have $\Theta_2 = (x_1 + x_4, x_3 + x_5, x_2) \Rightarrow \dim_K K[\Delta_2]/(\Theta_2) = 2.$

MOTIVATION

[H. Zheng, 2020] A balanced simplicial sphere of dimension d − 1 is called *neighborly of type* (n₁, n₂,..., n_d) ∈ Z^d if dim_K(K[Δ]/(Θ))_{es} = ∏_{k∈S} n_k,
 for all S ⊂ [d], e_S = ∑_{i∈S} e_i ∈ Z^d, where e₁,..., e_d are the unit vectors of Z^d.

MOTIVATION

• [H. Zheng, 2020] A balanced simplicial sphere of dimension d-1 is called *neighborly of type* $(n_1, n_2, ..., n_d) \in \mathbb{Z}^d$ if $\dim_K(K[\Delta]/(\Theta))_{e_S} = \prod_{k \in S} n_k$,

for all $S \subset [d]$, $\mathbf{e}_S = \sum_{i \in S} \mathbf{e}_i \in \mathbb{Z}^d$, where $\mathbf{e}_1, \dots, \mathbf{e}_d$ are the unit vectors of \mathbb{Z}^d .

• [H. Zheng, 2020] Prove that: balanced neighborly spheres of type (2,2,2,2) do not exist, but type (3,3,3,3) exist.

H. Zheng, Ear decomposition and balanced neighborly simplicial manifolds, *The Electronic Journal of Cominatorics*, **27** (2020), P1.10.

・ 「 ト ・ ヨ ト ・ 一 下 ・

• Let $R := K[x_{ij} \mid 1 \le i \le d, 1 \le j \le n_i]$: polynomial ring over a field.

- Let $R := K[x_{ij} \mid 1 \le i \le d, 1 \le j \le n_i]$: polynomial ring over a field.
- $f \in R$ is a balanced polynomial if deg(f) = (1, 1, ..., 1).

- Let $R := K[x_{ij} \mid 1 \le i \le d, 1 \le j \le n_i]$: polynomial ring over a field.
- $f \in R$ is a balanced polynomial if deg(f) = (1, 1, ..., 1).
- For a balanced polynomial $f \in R$, let us consider the algebra of differential operators over R. Set

$$H(f,S) = \dim_K \{g(\partial_{ij})f \mid g(x_{ij}) \in R_{\mathbf{e}_S}\},\$$

where $\partial_{ij} = \frac{\partial}{\partial x_{ij}}$, and R_{e_S} is the graded component of R of degree e_S .

- Let $R := K[x_{ij} \mid 1 \le i \le d, 1 \le j \le n_i]$: polynomial ring over a field.
- $f \in R$ is a balanced polynomial if deg(f) = (1, 1, ..., 1).
- For a balanced polynomial $f \in R$, let us consider the algebra of differential operators over R. Set

$$H(f,S) = \dim_K \{g(\partial_{ij})f \mid g(x_{ij}) \in R_{\mathbf{e}_S}\},\$$

where $\partial_{ij} = \frac{\partial}{\partial x_{ij}}$, and R_{e_S} is the graded component of R of degree e_S .

• A balanced polynomial f is neighborly of type $(n_1, \ldots, n_d) \in \mathbb{Z}^d$ if $H(f, S) = \prod_{k \in S} n_k, \forall S \subseteq [d]$ with $|S| \leq \frac{d}{2}$.

- Assume that $R = K[x_1, \cdots, x_n]$.
- Let $f = f(x_1, \ldots, x_n) \in R$: graded polynomial.

э

< ∃⇒

Introduction

• Assume that
$$R = K[x_1, \dots, x_n]$$
.
• Let $f = f(x_1, \dots, x_n) \in R$: graded polynomial.
• Set
 $ann(f) = \{g(x_1, \dots, x_n) \in R \mid g(\partial_i)f = 0\},\$
where $\partial_i = \frac{\partial}{\partial x_i}$.
Example: $f = x_1x_2 - x_2x_3 + x_3x_4 - x_4x_1 \in K[x_1, x_2, x_3, x_4]$. Then
 $ann(f) = \{x_1 + x_3, x_2 + x_4, x_1x_3, x_2x_4\},\$

• Assume that
$$R = K[x_1, \dots, x_n]$$
.
• Let $f = f(x_1, \dots, x_n) \in R$: graded polynomial.
• Set
 $ann(f) = \{g(x_1, \dots, x_n) \in R \mid g(\partial_i)f = 0\},\$
where $\partial_i = \frac{\partial}{\partial x_i}$.
Example: $f = x_1x_2 - x_2x_3 + x_3x_4 - x_4x_1 \in K[x_1, x_2, x_3, x_4]$. Then
 $ann(f) = \{x_1 + x_3, x_2 + x_4, x_1x_3, x_2x_4\},\$
since $(\partial_1 + \partial_3)f = (x_2 - x_4) + (-x_2 + x_4) = 0, \dots$

э

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lemma 1

If $f \in R$ is a balanced polynomial, then for any $S \subseteq [d]$. We have (i) $H(f,S) = \dim_K(R/\operatorname{ann}(f))_{e_S}$,

13/24

Lemma 1

If $f \in R$ is a balanced polynomial, then for any $S \subseteq [d]$. We have (i) $H(f,S) = \dim_K(R/\operatorname{ann}(f))_{e_S}$, (ii) $H(f,S) = H(f,[d] \setminus S)$.

Show that a balanced neighborly polynomial of type (2, 2, 2, 2) exist only when char(K) ≠ 2.

э

∃ ► < ∃ ►</p>

Image: Image:

프 에 에 프 에 이

э

MAIN GOAL

- Show that a balanced neighborly polynomial of type (2, 2, 2, 2) exist only when char $(K) \neq 2$.
- ② Construct a balanced neighborly polynomials of type (k, k, k, k) over any field K for all k ≠ 2

MAIN GOAL

- Show that a balanced neighborly polynomial of type (2, 2, 2, 2) exist only when char(K) ≠ 2.
- ② Construct a balanced neighborly polynomials of type (k, k, k, k) over any field K for all k ≠ 2
- We proved that if balanced neighborly simplicial spheres of type (n₁, n₂, · · · , n_d) exist, then balanced neighborly polynomials of type (n₁, n₂, · · · , n_d) exist over any field K.

MAIN GOAL

- Show that a balanced neighborly polynomial of type (2, 2, 2, 2) exist only when char(K) ≠ 2.
- ② Construct a balanced neighborly polynomials of type (k, k, k, k) over any field K for all k ≠ 2
- We proved that if balanced neighborly simplicial spheres of type (n₁, n₂, · · · , n_d) exist, then balanced neighborly polynomials of type (n₁, n₂, · · · , n_d) exist over any field K.
- Give an alternative proof for H. Zheng's result proving that balanced neighborly simplicial spheres of type (2,2,2,2) do not exist.

3

In case d is even, we have the following Lemma.

Lemma 2

Let f be a balanced neighborly polynomial of type $(n_1, \dots, n_d) \in \mathbb{Z}^d$. If d is even then $n_1 = n_2 = \dots = n_d$.

In case d is even, we have the following Lemma.

Lemma 2

Let f be a balanced neighborly polynomial of type $(n_1, \dots, n_d) \in \mathbb{Z}^d$. If d is even then $n_1 = n_2 = \dots = n_d$.

• From now, we consider $d = 4, n_1 = n_2 = n_3 = n_4 = k$, i.e. $R = K[x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k, w_1, \dots, w_k],$

In case d is even, we have the following Lemma.

Lemma 2

Let f be a balanced neighborly polynomial of type $(n_1, \dots, n_d) \in \mathbb{Z}^d$. If d is even then $n_1 = n_2 = \dots = n_d$.

• From now, we consider d = 4, $n_1 = n_2 = n_3 = n_4 = k$, i.e. $R = K[x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k, w_1, \dots, w_k]$, where $\deg(x_i) = e_1 = (1, 0, 0, 0)$, $\deg(y_i) = e_2 = (0, 1, 0, 0)$, $\deg(z_i) = e_3 = (0, 0, 1, 0)$, $\deg(w_i) = e_4 = (0, 0, 0, 1)$.

In case d is even, we have the following Lemma.

Lemma 2

Let f be a balanced neighborly polynomial of type $(n_1, \dots, n_d) \in \mathbb{Z}^d$. If d is even then $n_1 = n_2 = \dots = n_d$.

- From now, we consider $d = 4, n_1 = n_2 = n_3 = n_4 = k$, i.e. $R = K[x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k, w_1, \dots, w_k]$, where $\deg(x_i) = e_1 = (1, 0, 0, 0)$, $\deg(y_i) = e_2 = (0, 1, 0, 0)$, $\deg(z_i) = e_3 = (0, 0, 1, 0)$, $\deg(w_i) = e_4 = (0, 0, 0, 1)$.
- If $f \in R$ is a balanced polynomial, then

$$f = \sum_{(i_1, i_2, i_3, i_4) \in \{1, 2, \dots, k\}^4} a_{i_1, i_2, i_3, i_4} x_{i_1} y_{i_2} z_{i_3} w_{i_4},$$

where $a_{i_1, i_2, i_3, i_4} \in K$.

How?

Study about the existence of balanced neighborly polynomials of type (k, k, k, k) in the following cases:

- *k* = 2.
- k is odd.
- k is even and k = 4m.
- k is even and k = 4m + 2.

Theorem 1

There exists a balanced neighborly polynomial of type (2, 2, 2, 2) if and only if char $K \neq 2$.

Theorem 1

There exists a balanced neighborly polynomial of type (2, 2, 2, 2) if and only if char $K \neq 2$.

For $i \in \mathbb{Z}$, let $[i]_k \in \{1, 2, \dots, k\}$ be the number s.t $[i]_k \equiv i \pmod{k}$.

Theorem 1

There exists a balanced neighborly polynomial of type (2, 2, 2, 2) if and only if char $K \neq 2$.

For $i \in \mathbb{Z}$, let $[i]_k \in \{1, 2, \dots, k\}$ be the number s.t $[i]_k \equiv i \pmod{k}$.

Theorem 2

Let $k \in \mathbb{N}$ be odd and $f = \sum_{1 \le i,j \le k} x_i y_j z_{[j-i]_k} w_{[i+j]_k}$. Then f is a balanced neighborly polynomial of type (k, k, k, k).

17 / 24

Theorem 1

There exists a balanced neighborly polynomial of type (2, 2, 2, 2) if and only if char $K \neq 2$.

For $i \in \mathbb{Z}$, let $[i]_k \in \{1, 2, \dots, k\}$ be the number s.t $[i]_k \equiv i \pmod{k}$.

Theorem 2

Let
$$k \in \mathbb{N}$$
 be odd and $f = \sum_{1 \le i,j \le k} x_i y_j z_{[j-i]_k} w_{[i+j]_k}$. Then f is a balanced neighborly polynomial of type (k, k, k, k) .

Example: $f = x_1y_1z_3w_2 + x_1y_2z_1w_3 + x_1y_3z_2w_1 + x_2y_1z_2w_3 + x_2y_2z_3w_1 + x_2y_3z_1w_2 + x_3y_1z_1w_1 + x_3y_2z_2w_2 + x_3y_3z_3w_3$

人口 医水理 医水黄 医水黄素 计算

From now on we assume that k is even. Let $\overline{x}_i = x_i + \frac{k}{2}$, $\overline{y}_i = y_i + \frac{k}{2}$, $\overline{z}_i = z_i + \frac{k}{2}, \ \overline{w}_i = w_i + \frac{k}{2} \text{ for } i = 1, 2, \dots, \frac{k}{2}.$

Image: Image:

From now on we assume that k is even. Let $\overline{x}_i = x_i + \frac{k}{2}$, $\overline{y}_i = y_i + \frac{k}{2}$, $\overline{z}_i = z_i + \frac{k}{2}$, $\overline{w}_i = w_i + \frac{k}{2}$ for $i = 1, 2, \dots, \frac{k}{2}$. Suppose k = 4m, with $m \in \mathbb{N}$. Let

$$f = \sum_{1 \le i,j \le 2m,i:odd} x_i y_j z_{[i+j-1]_{2m}} w_{[\frac{i-1}{2}+j]_{2m}} + \sum_{1 \le i,j \le 2m,i:odd} \overline{x}_i y_j \overline{z}_{[i+j-1]_{2m}} \overline{w}_{[\frac{i-1}{2}+j+m]_{2m}} + \sum_{1 \le i,j \le 2m,i:odd} x_i \overline{y}_j \overline{z}_{[i+j-1]_{2m}} \overline{w}_{[\frac{i-1}{2}+j]_{2m}} + \sum_{1 \le i,j \le 2m,i:odd} \overline{x}_i \overline{y}_j z_{[i+j-1]_{2m}} w_{[\frac{i-1}{2}+j+m]_{2m}}$$

$$+ \sum_{1 \le i,j \le 2m,i:even} x_i y_j z_{[i+j-1]_{2m}} \overline{w}_{[\frac{i-2}{2}+j]_{2m}} \\ + \sum_{1 \le i,j \le 2m,i:even} \overline{x}_i y_j \overline{z}_{[i+j-1]_{2m}} w_{[\frac{i-2}{2}+j+m]_{2m}} \\ + \sum_{1 \le i,j \le 2m,i:even} x_i \overline{y}_j \overline{z}_{[i+j-1]_{2m}} w_{[\frac{i-2}{2}+j]_{2m}} \\ + \sum_{1 \le i,j \le 2m,i:even} \overline{x}_i \overline{y}_j z_{[i+j-1]_{2m}} \overline{w}_{[\frac{i-2}{2}+j+m]_{2m}}.$$

э

・ロト ・日下・ ・ ヨト ・ ヨト

$$+ \sum_{1 \le i,j \le 2m,i:even} x_i y_j z_{[i+j-1]_{2m}} \overline{w}_{[\frac{i-2}{2}+j]_{2m}} \\ + \sum_{1 \le i,j \le 2m,i:even} \overline{x}_i y_j \overline{z}_{[i+j-1]_{2m}} w_{[\frac{i-2}{2}+j+m]_{2m}} \\ + \sum_{1 \le i,j \le 2m,i:even} x_i \overline{y}_j \overline{z}_{[i+j-1]_{2m}} w_{[\frac{i-2}{2}+j]_{2m}} \\ + \sum_{1 \le i,j \le 2m,i:even} \overline{x}_i \overline{y}_j z_{[i+j-1]_{2m}} \overline{w}_{[\frac{i-2}{2}+j+m]_{2m}}.$$

Then f is a balanced neighborly polynomial of type (k, k, k, k).

Suppose k = 4m + 2, with $m \in \mathbb{N}$. Let

$$f = \sum_{1 \le i,j \le 2m+1,i:odd} x_i y_j z_{[i+j-1]_{2m+1}} w_{[\frac{i-1}{2}+j]_{2m+1}} + \sum_{1 \le i,j \le 2m+1,i:odd} \overline{x}_i y_j \overline{z}_{[i+j-1]_{2m+1}} \overline{w}_{[\frac{i-1}{2}+j+m]_{2m+1}} + \sum_{1 \le i,j \le 2m+1,i:odd} x_i \overline{y}_j \overline{z}_{[i+j-1]_{2m+1}} \overline{w}_{[\frac{i-1}{2}+j]_{2m+1}} + \sum_{1 \le i,j \le 2m+1,i:odd} \overline{x}_i \overline{y}_j z_{[i+j-1]_{2m+1}} w_{[\frac{i-1}{2}+j+m]_{2m+1}}$$

3 k 3

20 / 24

Image: A matrix

$$+ \sum_{1 \le i,j \le 2m+1,i:even} x_i y_j z_{[i+j-1]_{2m+1}} \overline{w}_{[\frac{i-2}{2}+j]_{2m+1}} \\ + \sum_{1 \le i,j \le 2m+1,i:even} \overline{x}_i y_j \overline{z}_{[i+j-1]_{2m+1}} w_{[\frac{i}{2}+j+m]_{2m+1}} \\ + \sum_{1 \le i,j \le 2m+1,i:even} x_i \overline{y}_j \overline{z}_{[i+j-1]_{2m+1}} w_{[\frac{i-2}{2}+j]_{2m+1}} \\ + \sum_{1 \le i,j \le 2m+1,i:even} \overline{x}_i \overline{y}_j z_{[i+j-1]_{2m+1}} \overline{w}_{[\frac{i}{2}+j+m]_{2m+1}} \\ + \sum_{1 \le j \le 2m+1} \overline{x}_{2m+1} y_j \overline{z}_j w_j + \sum_{1 \le j \le 2m+1} \overline{x}_{2m+1} \overline{y}_j z_j \overline{w}_j.$$

э

・ロト ・日下・ ・ ヨト ・ ヨト

$$\begin{split} &+ \sum_{1 \leq i,j \leq 2m+1, i:even} x_i y_j z_{[i+j-1]_{2m+1}} \overline{w}_{[\frac{i-2}{2}+j]_{2m+1}} \\ &+ \sum_{1 \leq i,j \leq 2m+1, i:even} \overline{x}_i y_j \overline{z}_{[i+j-1]_{2m+1}} w_{[\frac{i}{2}+j+m]_{2m+1}} \\ &+ \sum_{1 \leq i,j \leq 2m+1, i:even} x_i \overline{y}_j \overline{z}_{[i+j-1]_{2m+1}} w_{[\frac{i-2}{2}+j]_{2m+1}} \\ &+ \sum_{1 \leq i,j \leq 2m+1, i:even} \overline{x}_i \overline{y}_j z_{[i+j-1]_{2m+1}} \overline{w}_{[\frac{i}{2}+j+m]_{2m+1}} \\ &+ \sum_{1 \leq i,j \leq 2m+1, i:even} \overline{x}_i \overline{y}_j \overline{z}_{[i+j-1]_{2m+1}} \overline{w}_{[\frac{i}{2}+j+m]_{2m+1}} \\ \end{split}$$

Then f is a balanced neighborly polynomial of type (k, k, k, k).

I = ►

A D > A A >

If a balanced neighborly simplicial sphere of type (n_1, \ldots, n_d) exists over a field K, then balanced neighborly polynomial of type (n_1, \ldots, n_d) exists over a field K.

< ∃ ►

If a balanced neighborly simplicial sphere of type (n_1, \ldots, n_d) exists over a field K, then balanced neighborly polynomial of type (n_1, \ldots, n_d) exists over a field K.

Corollary

There are no balanced neighborly simplicial spheres of type (2, 2, 2, 2).

Technique

Lemma 3

(i) If f is a squarefree polynomial of degree d, then x₁²,..., x_n² ∈ ann(f) and R/(ann(f)) is an Artinian Gorenstein graded K-algebra of socle degree d.

Technique

Lemma 3

- (i) If f is a squarefree polynomial of degree d, then x₁²,..., x_n² ∈ ann(f) and R/(ann(f)) is an Artinian Gorenstein graded K-algebra of socle degree d.
- (ii) If I is a homogenerous ideal such that R/I is an Artinian Gorenstein graded K-algebra of socle degree d and $x_1^2, \ldots, x_n^2 \in I$, then there is a squarefree polynomial such that $\operatorname{ann}(f) = I$.

Technique

Lemma 3

- (i) If f is a squarefree polynomial of degree d, then x₁²,..., x_n² ∈ ann(f) and R/(ann(f)) is an Artinian Gorenstein graded K-algebra of socle degree d.
- (ii) If I is a homogenerous ideal such that R/I is an Artinian Gorenstein graded K-algebra of socle degree d and $x_1^2, \ldots, x_n^2 \in I$, then there is a squarefree polynomial such that $\operatorname{ann}(f) = I$.

Note that, an Artinian graded K-algebra $R/I = \bigoplus_{k=0}^{u} (R/I)_k$ is called *Gorenstein of socle degree d* if $0:_{R/I} (x_1, \ldots, x_n) = (R/I)_d$ has K-dimension 1, where $(R/I)_d \neq 0$.

э

THANK YOU FOR YOUR ATTENTION !

э

글 🖌 🖌 글 🕨

Image: A matrix