Gorensteinness for normal tangent cones of geometric ideals

Tomohiro Okuma (Yamagata Univ.) Kei-ichi Watanabe (Nihon Univ. and Meiji Univ.) Ken-ichi Yoshida (Nihon Univ.) .

The **43**rd Japan Symposium on Commutative Algebra at Osaka University

November 14, 2022

Notation

Throughout this talk, we assume

Assumption (★)

- (A, m): excellent normal local domain.
- $A \supset K = \overline{K}$: algebraically closed field
- $\dim \mathbf{A} = \mathbf{2}$, **A** is *not* regular
- I is an m-primary integrally closed ideal
- $\mathbf{Q} = (\mathbf{a}, \mathbf{b})$ is a minimal reduction of \mathbf{I}

 \exists resolution of sing. $f: X \to \operatorname{Spec} A$, $\exists Z$ an anti-nef cycle on X s.t.

$$IO_X = O_X(-Z), I = H^0(X, O_X(-Z)).$$

Then we denote it by $I = I_Z$.

(So, $I = I_Z$ means that I is an \mathfrak{m} -primary integrally closed ideal)

Two normal reduction numbers

Definition 1.1 (Normal reduction numbers (cf. [OWY4]))

• The relative normal reduction number of *I* is defined by

$$\operatorname{nr}(I) := \min\{r \geq 1 \mid \overline{I^{r+1}} = Q\overline{I^r}\}.$$

The normal reduction number of I is defined by

$$\bar{\mathbf{r}}(I) := \min\{r \geq 1 \mid I^{N+1} = QI^N \ (\forall N \geq r)\}.$$

Then $1 \leq \operatorname{nr}(I) \leq \overline{\operatorname{r}}(I)$.

For any given $r \ge 3$, $\exists I = I_Z \subset A$: s.t. $1 = nr(I) < r = \overline{r}(I)$ (cf. [OWY5]).

q(nl)

For any $I = I_Z$ and a positive integer n, we put

$$q(nI) := \dim_K H^1(O_X(-nZ)).$$

 $p_g(A) := \dim_K H^1(O_X) = q(0I)$ is called a geometric genus.

Proposition 1.2 (cf. [OWY1,OWY4])

For any minimal reduction Q of I,

- $(1) \ 0 \leq q(I) \leq p_g(A).$
- $(2) k \geq 0 \implies q(kl) \geq q((k+1)l).$
- (3) $q(nl) = q((n+1)l) \implies q(nl) = q(ml) \ (\forall m \ge n).$

Put $\mathbf{q}(\infty \mathbf{I}) = \mathbf{q}(\mathbf{n}\mathbf{I})$ for large enough \mathbf{n} .

$$(4) \ 2 \cdot q(kl) + \ell_A(\overline{l^{k+1}}/Q\overline{l^k}) = q((k+1)l) + q((k-1)l).$$

$\bar{\mathbf{r}}(\mathbf{I})$ and $\mathbf{q}(\mathbf{nI})$

Proposition 1.3 ([OWY5, Proposition 2.2])

For $I = I_Z$, we have

(1)
$$\operatorname{nr}(I) = \min\{n \in \mathbb{Z}_+ \mid q((n-1)I) - q(nI) = q(nI) - q((n+1)I)\}.$$

- (2) $\bar{\mathbf{r}}(I) = \min\{\mathbf{n} \in \mathbb{Z}_+ \mid \mathbf{q}((\mathbf{n} 1)I) = \mathbf{q}(\mathbf{n}I)\}.$
- (3) $\bar{\mathbf{r}}(\mathbf{I}) \leq p_g(\mathbf{A}) + 1$. If equality holds, then $\mathbf{nr}(\mathbf{I}) = 1$.

For instance, if $\bar{\mathbf{r}}(\mathbf{I}) = \mathbf{2}$, then $\mathbf{q}(\mathbf{2I}) = \mathbf{q}(\mathbf{I})$ holds. Hence

$$\mathbf{2} \cdot \mathbf{q}(\mathbf{I}) + \ell_{\mathbf{A}}(\overline{\mathbf{I}^{2}}/\mathbf{Q}\mathbf{I}) = \mathbf{q}((\mathbf{2}\mathbf{I}) + \mathbf{q}(\mathbf{0}\mathbf{I}))$$

$$\implies$$
 $\ell_A(I^2/QI) = p_g(A) - q(I)$

■
$$\exists I = I_Z \subset A \text{ s.t. } p_g(A) = 2 > q(I) = 1 > q(2I) = \cdots q(\infty I) = 0.$$

So
$$1 = \operatorname{nr}(I) < \overline{r}(I) = 3$$
 and $p_{\sigma}(A) = 2$.

Normal Hilbert coefficients

Proposition 1.4 ([OWY2, Theorem 3.2])

The normal Hilbert polynomial $\bar{P}_l(n)$ can be written as the following form:

$$\bar{P}_{I}(n) = \bar{e}_{0}(I)\binom{n+2}{2} - \bar{e}_{1}(I)\binom{n+1}{1} + \bar{e}_{2}(I)$$

- (1) $\overline{P}_I(n) = \ell_A(A/\overline{I^{n+1}}) (\forall n \geq p_g(A) 1).$
- (2) $\bar{e}_0(I) = e_0(I) = -Z^2$.
- (3) $\bar{e}_1(I) \bar{e}_0(I) + \ell_A(A/I) = p_g(A) q(I)$.
- (4) $\bar{e}_2(I) = p_g(A) q(nI) = p_g(A) q(\infty I) \ (\forall n \ge p_g(A)).$
- Each $\bar{\mathbf{e}}_{i}(\mathbf{I})$ is called a normal Hilbert coefficient.

Some graded algebra (normal tangent cone etc.)

Definition 1.5

For $I = I_Z$,

- $G(I) := \bigoplus_{n \ge 0} I^n/I^{n+1}$: the associted graded ring of I.
- $\mathbf{G}(I) := \bigoplus_{n \ge 0} \overline{I^n} / \overline{I^{n+1}}$: the normal tangent cone of I.

Question: When is G(I) Gorenstein

In this talk, we consider the following question for 'geometric' ideals.

Question 1.6

- When is $\overline{G}(I)$ Cohen-Macaulay?
- 2 When is $\overline{G}(I)$ Gorenstein?

The above question is related to our previous reserach, which the following observation shows.

Proposition 1.7

If $\overline{\mathbf{G}}(\mathbf{I})$ is Cohen-Macaulay, then $\mathbf{nr}(\mathbf{I}) = \overline{\mathbf{r}}(\mathbf{I})$.

Example: $\overline{G}(I)$ is not CM

Ex 1.8

Let K be a filed of $\operatorname{char} K \neq 2, 3$, and let $A = K[[xy, xz, y^2, yz, z^2]]$ with $x^2 = y^6 + z^6$. That is, $A = K[a, b, c, d, e]/\mathfrak{a}$, where \mathfrak{a} is generated by the following polynomials:

$$a^2 - d^4 - de^3$$
, $ab - cd^3 - ce^3$, $b^2 - d^3e - e^4$
 $ac - bd$, $ae - bc$, $de - c^2$

Then **A** is an excellent normal local domain with $\mathbf{v} = \mathbf{e} + \mathbf{d} - \mathbf{1} = \mathbf{5}$.

If we put
$$I = (xy, xz, yz, y^2, z^4) = (a, b, c, d, e^2) \supset Q = (c, d - e^2)$$
, then $I = I_Z$ and $1 = \text{nr}(I) < \overline{r}(I) = 3$.

In particular, $\overline{G}(I)$ is NOT Cohen-Macaulay.

On the other hand, G(I) is Cohen-Macaulay.

p_g -ideal

Definition 1.9 ([OWY1])

An ideal $I = I_Z$ is called a p_g -ideal if it satisfies one of the following equivalent conditions:

- $\mathbf{0}$ $\bar{\mathbf{r}}(I) = \mathbf{1}$.
- $q(I) = p_g(A).$

- **1** is *normal* and stable.
- $I = I_Z$ is normal if $I^n = I^n$ for every $n \ge 1$.
- $I = I_Z$ is stable if $I^2 = QI$ for some minimal reduction Q of I.

Proposition 1.10

A is a rational singularity (i.e. $p_g(A) = 0$) $\iff \forall I = I_Z$ is a p_g -ideal.

$\overline{G}(I)$ of p_g -ideals

Proposition 1.11 ([ORWY])

If I is a p_g -ideal, then

- \bullet $\overline{G}(I) = G(I)$ is Cohen-Macaulay.
- $\overline{\mathcal{R}}(\mathbf{I}) = \mathcal{R}(\mathbf{I})$ is a Cohen-Macaulay normal domain.

An ideal $I = I_Z$ is called good if I is stable with I = Q : I.

Theorem 1.12

Suppose that ${f I}$ is a ${f p_g}$ -ideal. Then the following conditions are equivalent:

- \bullet $\overline{G}(I) = G(I)$ is Gorenstein.
- 2 I is good.

Elliptic ideal

Definition 1.13 ([OWRY, Theorem 3.2])

An ideal $I = I_Z$ is called a elliptic ideal if it satisfies one of the following equivalent conditions:

- $\mathbf{0}$ $\bar{\mathbf{r}}(\mathbf{I}) = \mathbf{2}$.

Theorem 1.14 ([ORWY, Corollary 3.7])

A is an elliptic singularity $\Longrightarrow \bar{\mathbf{r}}(\mathbf{I}) \leq \mathbf{2}$ for any $\mathbf{I} = \mathbf{I}_{\mathbf{Z}}$.

How about the converse?

Main Question

Question 1.15

Assume that I is an elliptic ideal.

- When is G(I) Cohen-Macaulay?
- 2 When is $\overline{G}(I)$ Gorenstein?

Theorem 1.16 ([ORWY], Huneke)

If I is elliptic ideal, then G(I) is Cohen-Macaulay.

Main result

The following theorem gives a characterization for Gorensteinness of G(I) for any elliptic ideal I.

Theorem 2.1

Assume **A** is Gorenstein and $\bar{\mathbf{r}}(\mathbf{I}) = \mathbf{2}$.

Then the following conditions are equivalent:

- \bullet $\overline{\mathbf{G}}(\mathbf{I})$ is Gorenstein.
- 2 \mathbf{Q} : $\mathbf{I} = \mathbf{Q} + \mathbf{I}^2$ holds true.
- lacksquare $\ell_A(I^2/QI) = \ell_A(A/I)$ holds true.
- $oldsymbol{\overline{e}_2}(I) = \ell_A(A/I)$ holds true.
- **3** $KZ = -Z^2$, that is, $\chi(Z) = 0$.

Sketch of the proof $(2) \Longrightarrow (1)$

Theorem 1.16 $\Longrightarrow \overline{G} := \overline{G}(I)$ is Cohen-Macaulay.

Then $a^*, b^* \in G$ forms a G-sequence, where Q = (a, b).

If we put
$${m B}=\overline{{m G}}/({m a}^*,{m b}^*)\cong {m A}/{m I}\oplus {m I}/({m Q}+\overline{{m I}^2})\oplus ({m Q}+\overline{{m I}^2})/{m Q}$$
, then

G: Gorenstein ← B: Gorenstein.

$$(2) \Longrightarrow (1) : ETS: \dim_K Soc(B) = 1.$$

Let $x^* \in Soc(B)$, a homogeneous element.

When
$$x^* \in B_0$$
, $x^*B_2 = 0 \Rightarrow x \in Q : (Q + \overline{I^2}) \stackrel{\text{(2)}}{=} Q : (Q : I) = I$.

When
$$x^* \in B_1$$
, $x^*B_1 = 0 \Rightarrow x \in Q$: $I = Q + \overline{I^2}$.

Hence $Soc(B) \subset Soc(B_2) \cong K$, as required.

- (1) $\overline{\mathbf{G}}(\mathbf{I})$ is Gorenstein.
- (2) $Q: I = Q + \overline{I^2}$.

Sketch of the proof $(1) \Longrightarrow (2) \Longleftrightarrow (3)$

(Obs i) Huneke-Itoh's theorem (i.e. $Q \cap I^2 = QI$)

$$\Longrightarrow \ell_{\mathbf{A}}(\mathbf{B_2}) = \ell_{\mathbf{A}}(\mathbf{Q} + \overline{\mathbf{I}^2}/\mathbf{Q}) = \ell_{\mathbf{A}}(\overline{\mathbf{I}^2}/\mathbf{Q} \cap \overline{\mathbf{I}^2}) = \ell_{\mathbf{A}}(\overline{\mathbf{I}^2}/\mathbf{Q}\mathbf{I}).$$

(Obs ii) Matlis duality

$$\Longrightarrow \ell_{A}(Q:I/Q)=\ell_{A}(K_{A/I})=\ell_{A}(A/I)=\ell_{A}(B_{0}).$$

(Obs iii)
$$\overline{r}(I) = 2 \Longrightarrow I\overline{I^2} \subset \overline{I^3} = Q\overline{I^2} \Longrightarrow Q + \overline{I^2} \subset Q : I.$$

$$\therefore \ell_{A}(B_{0}) - \ell_{A}(B_{2}) = \ell_{A}(Q:I/Q + \overline{I^{2}}) = \ell_{A}(\overline{I^{2}}/QI) - \ell_{A}(A/I).$$

Hence this implies $(1) \Longrightarrow (2) \Longleftrightarrow (3)$.

- (1) $\overline{\mathbf{G}}(\mathbf{I})$ is Gorenstein.
- (2) $Q: I = Q + I^2$.
- (3) $\ell_A(I^2/QI) = \ell_A(A/I)$.

Sketch of the proof $(3) \iff (4) \iff (5)$

Assume $\bar{\mathbf{r}}(\mathbf{I}) = \mathbf{2}$. Then $\mathbf{q}(\mathbf{I}) = \mathbf{q}(\mathbf{2}\mathbf{I}) = \mathbf{q}(\infty \mathbf{I})$.

(Obs i) Prop. 1.2
$$\Longrightarrow \ell_A(\overline{I^2}/QI) = p_g(A) - q(I)$$
.

(Obs ii) Prop. 1.4
$$\Longrightarrow \bar{e}_2(I) = p_g(A) - q(\infty I) \left(= \ell_A(\overline{I^2}/QI) \right)$$
.

(Obs iii) Kato's Riemann-Roch formula

$$\underline{\ell_{m{A}}(m{A}/m{I})+m{q}(m{I})=\chi(m{Z})+m{p_g}(m{A})},$$
 where $\chi(m{Z})=-rac{m{Z^2+KZ}}{m{2}}.$

$$\Longrightarrow \chi(\mathbf{Z}) = \ell_{\mathbf{A}}(\mathbf{A}/\mathbf{I}) - \{p_{\mathbf{g}}(\mathbf{A}) - q(\mathbf{I})\}.$$

Hence
$$\ell_A(A/I) - \ell_A(\overline{I^2}/QI) = \ell_A(A/I) - \overline{e}_2(I) = \chi(Z).$$

(3)
$$\ell_A(\overline{I^2}/QI) = \ell_A(A/I)$$
.

$$(4) \; \bar{\boldsymbol{e}}_{2}(\boldsymbol{I}) = \boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{A}/\boldsymbol{I}).$$

(5)
$$\chi(Z) = 0$$
, that is, $KZ = -Z^2$.

Strongly elliptic ideal

Definition 2.2 ([OWRY, Theorem 3.9])

An ideal $I = I_Z$ is called a strongly elliptic ideal if it satisfies one of the following equivalent conditions:

- $\mathbf{\bar{r}}(I) = \mathbf{2} \text{ and } \ell_{\mathbf{A}}(\overline{I^2}/\mathbf{Q}I) = \mathbf{1} \text{ for some min. reduction } \mathbf{Q} \text{ of } I.$
- 2 $p_g(A) 1 = q(I) = q(\infty I)$.
- $\mathbf{e}_{2}(I) = 1.$

A (resp. A Gorenstein) local ring \boldsymbol{A} is called a strongly elliptic singularity (resp. minimally elliptic singularity) if $\boldsymbol{p_g}(\boldsymbol{A}) = \boldsymbol{1}$.

Theorem 2.3 ([ORWY, Theorem 3.14])

- A is a strong elliptic singularity
- \Rightarrow any $I = I_Z$ is either a p_g -ideal or a strongly elliptic ideal.

When is $G(\mathfrak{m})$ Gorenstein

In what follows, we always assume that **A** is Gorenstein.

When is $\overline{\mathbf{G}}(\mathfrak{m})$ Gorenstein?

Proposition 2.4

- $\mathbf{\bar{r}}(\mathfrak{m}) \leq \mathbf{2} \Longrightarrow \mathbf{\bar{G}}(\mathfrak{m}) \text{ is Gorenstein.}$
- 2 If $p_g(A) \le 2 \Longrightarrow \overline{G}(\mathfrak{m})$ is Gorenstein.

If $\bar{\mathbf{r}}(\mathbf{m}) = \mathbf{1}$, then \mathbf{m} is good.

If $\bar{\mathbf{r}}(\mathbf{m}) = \mathbf{2}$, then \mathbf{m} satisfies the condition of the theorem.

$$p_g(A) = 2 \text{ (A:Gor.)} \stackrel{\textit{Yau}}{\Longrightarrow} A \text{: elliptic} \stackrel{\textit{Okuma}}{\Longrightarrow} \bar{\mathbf{r}}(I) \leq 2 \text{ for } \forall I = I_Z.$$

Geometric genus

Lemma 2.5

$$\mathbf{A} = \mathbf{K}[[\mathbf{x}, \mathbf{y}, \mathbf{z}]]/(\mathbf{x}^{\mathbf{a}} + \mathbf{y}^{\mathbf{b}} + \mathbf{z}^{\mathbf{c}})$$

$$\implies p_g(A) = \sum_{n=0}^{a(A)} \dim_K A_n$$

For example, we consider $\mathbf{A} = \mathbb{C}[[\mathbf{x}, \mathbf{y}, \mathbf{z}]]/(\mathbf{x}^2 + \mathbf{y}^3 + \mathbf{z}^{6g+1})$.

Put
$$\deg(x) = 3(6g + 1)$$
, $\deg(y) = 2(6g + 1)$, and $\deg(z) = 6$.

Then
$$a(A) = 6(6g + 1) - \{3(6g + 1) + 2(6g + 1) + 6\} = 6g - 5$$
.

$$\therefore p_g(A) = \sum_{n=0}^{6g-5} \dim_K A_n = \sharp \left\{1, z, z^2, \dots, z^{g-1}\right\} = g.$$

When is $G(\mathfrak{m})$ Gorenstein: Examples (1)

Ex 2.6

Let $g \ge 1$ be an integer.

$$\mathbf{0} \ \mathbf{A} = \mathbb{C}[[\mathbf{x}, \mathbf{y}, \mathbf{z}]]/(\mathbf{x}^2 + \mathbf{y}^3 + \mathbf{z}^{6g+1}).$$

$$\mathbf{p}_{\mathbf{g}}(\mathbf{A}) = \mathbf{g}, \mathbf{\bar{r}}(\mathbf{m}) = \mathbf{1},$$

$$\mathbf{\bar{G}}(\mathbf{m}) = \mathbf{G}(\mathbf{m}) \cong \mathbf{K}[\mathbf{X}, \mathbf{Y}]/(\mathbf{X}^2) \text{ is Gorenstein.}$$

$${m p}_{m g}({m A})={m g}, {f ar r}({m m})={m 2}, {f \overline G}({m m})$$
 is Gorenstein. Indeed,

$$\overline{G}(\mathfrak{m}) \cong \begin{cases} \mathbb{C}[X, Y, Z]/(X^2 + Y^4 + Z^4) & \text{(if } g = 1) \\ \mathbb{C}[X, Y, Z]/(X^2 + Y^4) & \text{(o.e.)} \end{cases}$$

When is $G(\mathfrak{m})$ Gorenstein: Examples (2)

- **1** $\exists A$ which satisfies $\overline{\mathbf{r}}(\mathfrak{m}) = \mathbf{3}$ and $\overline{\mathbf{G}}(\mathfrak{m})$ is Not Gorenstein.
- **2** $\exists A$ which satisfies $p_g(A) = 3$ and $\overline{G}(\mathfrak{m})$ is Not Gorenstein.

Ex 2.7

$$A = \mathbb{C}[[x, y, z]]/(x^3 + y^5 + z^5).$$

Then $\overline{\mathbf{r}}(\mathfrak{m}) = \boldsymbol{p_g}(\boldsymbol{A}) = \mathbf{3}$, and that $\overline{\boldsymbol{G}}(\mathfrak{m})$ is Not Gorenstein

Application: Elliptic ideals in Gorenstein elliptic singularity

Using geometric tools, we give the following finiteness therorem.

Theorem 2.8

Assume that **A** is an elliptic Gorenstein singularity.

If we put $\mathcal{G}_{ell} := \{ \mathbf{I} = \mathbf{I}_{\mathbf{Z}} \subset \mathbf{A} \mid \mathbf{I} \text{ is elliptic, } \mathbf{G}(\mathbf{I}) \text{ is Gorenstein} \}$, then we have $\sharp(\mathcal{G}_{ell}) \leq p_g(\mathbf{A})$.

A is called an elliptic singularity if $\chi(D) \ge 0$ for any cycle D > 0 and $\chi(F) = 0$ for some cycle F > 0.

Question 2.9

For any Gorentein local ring A, is the set \mathcal{G}_{ell} above a finite set?

Application: Elliptic ideals in Gorenstein elliptic singularity

Ex 2.10

Let
$$A = \mathbb{C}[[x, y, z]]/(x^2 + z(z^{4n+2} + y^4))$$
 and $B = \mathbb{C}[x, y, z]/(x^2 + y^3 + z^{6(2n+1)}).$

Then both **A** and **B** are elliptic Gorenstein singularities with the same resolution graph.

- **2** $p_g(B) = 2n + 1$ and $G_{ell} = \emptyset$.

Note: $G(\mathfrak{m})$ is Gorenstein. But $\mathfrak{m} \subset B$ is not an elliptic ideal but a good p_g -ideal.

Thank you very much for your attention!

References

- 【OWY1】T. Okuma, K.-i. Watanabe, and K. Yoshida, Good ideals and p_g-ideals in two-dimensional normal singularities, Manuscripta Math. 150 (2016), no. 3-4, 499–520.
- [OWY2] T. Okuma, K.-i. Watanabe, and K. Yoshida, Rees algebras and p_g -ideals in a two-dimensional normal local domain, Proc. Amer. Math. Soc. **145** (2017), no. 1, 39–47.
- 【OWY4】T. Okuma, K.-i. Watanabe, and K. Yoshida, Normal reduction numbers for normal surface singularities with application to elliptic singularities of Brieskorn type, Acta Math. Vietnamica, 44 (2019), no. 1, 87–100.
- [OWY5] T. Okuma, K.-i. Watanabe, and K. Yoshida, The normal reduction number of two-dimensional cone-like singularities, Proc. Amer. Math. Soc. 149 (2021), 4569–4581.
- 【ORWY】T. Okuma, M.E.Rossi, K.-i. Watanabe, and K. Yoshida, Normal Hilbert coefficients and elliptic ideals in normal two-dimensional singularities, to appear in Nagoya Math. J. (2022).