Gorensteinness for normal tangent cones of geometric ideals

Tomohiro Okuma (Yamagata Univ.)
Kei-ichi Watanabe (Nihon Univ. and Meiji Univ.) Ken-ichi Yoshida (Nihon Univ.) .

The $43{ }^{\text {rd }}$ Japan Symposium on Commutative Algebra at Osaka University

November 14, 2022

Notation

Throughout this talk, we assume

Assumption ($*$)

- $(\boldsymbol{A}, \mathfrak{m})$: excellent normal local domain.
- $\boldsymbol{A} \supset \boldsymbol{K}=\overline{\boldsymbol{K}}$: algebraically closed field
- $\operatorname{dim} \boldsymbol{A}=\mathbf{2}, \boldsymbol{A}$ is not regular
- I is an m-primary integrally closed ideal
- $\boldsymbol{Q}=(\mathbf{a}, \boldsymbol{b})$ is a minimal reduction of \boldsymbol{I}
$\boldsymbol{\exists}$ resolution of sing. $\boldsymbol{f}: \boldsymbol{X} \rightarrow \operatorname{Spec} \boldsymbol{A}, \boldsymbol{\exists} \boldsymbol{Z}$ an anti-nef cycle on \boldsymbol{X} s.t.

$$
O_{X}=O_{X}(-Z), \quad I=H^{0}\left(X, O_{X}(-Z)\right)
$$

Then we denote it by $\boldsymbol{I}=I_{\boldsymbol{Z}}$.
(So, $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{Z}}$ means that \boldsymbol{I} is an \mathbf{m}-primary integrally closed ideal)

Two normal reduction numbers

Definition 1.1 (Normal reduction numbers (cf. [OWY4]))

- The relative normal reduction number of I is defined by

$$
\operatorname{nr}(I):=\min \left\{r \geq 1 \mid \overline{I^{r+1}}=Q \bar{Q}\right\}
$$

- The normal reduction number of \boldsymbol{I} is defined by

$$
\overline{\mathbf{r}}(I):=\min \left\{r \geq 1 \mid \overline{I^{N+1}}=Q \bar{I}^{N}(\forall N \geq r)\right\}
$$

Then $\mathbf{1} \leq \mathbf{n r}(\boldsymbol{I}) \leq \overline{\mathbf{r}}(I)$.
For any given $\boldsymbol{r} \geq \mathbf{3}, \boldsymbol{\exists I}=\boldsymbol{I} \boldsymbol{Z} \subset \boldsymbol{A}$: s.t. $\mathbf{1}=\mathbf{n r}(\boldsymbol{I})<\boldsymbol{r}=\overline{\mathbf{r}}(\boldsymbol{I})$ (cf. [OWY5]).

$q(n l)$

For any $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{z}}$ and a positive integer \boldsymbol{n}, we put

$$
\boldsymbol{q}(n I):=\operatorname{dim}_{K} H^{1}\left(O_{X}(-n Z)\right)
$$

$\boldsymbol{p}_{\boldsymbol{g}}(\boldsymbol{A}):=\operatorname{dim}_{\boldsymbol{K}} \boldsymbol{H}^{\mathbf{1}}\left(\boldsymbol{O}_{\boldsymbol{X}}\right)=\mathbf{q}(\mathbf{O})$ is called a geometric genus.

Proposition 1.2 (cf. [OWY1,OWY4])

For any minimal reduction \mathbf{Q} of \boldsymbol{I},
(1) $0 \leq q(I) \leq p_{g}(A)$.
(2) $k \geq 0 \Rightarrow q(k I) \geq q((k+1) I)$.
(3) $\boldsymbol{q}(n \mathbf{I})=\boldsymbol{q}((n+1) \boldsymbol{I}) \Longrightarrow \boldsymbol{q}(n \mathbf{l})=\boldsymbol{q}(m \boldsymbol{l})(\forall m \geq n)$.

Put $\mathbf{q}(\infty \mathbf{l})=\mathbf{q}(\boldsymbol{n l})$ for large enough \boldsymbol{n}.
(4) $\mathbf{2} \cdot \mathbf{q}(k I)+\boldsymbol{\ell}_{\boldsymbol{A}}\left(\overline{I^{k+1}} / \mathbf{Q I ^ { \boldsymbol { k } }}\right)=\mathbf{q}((\boldsymbol{k}+\mathbf{1}) \boldsymbol{I})+\mathbf{q}((\boldsymbol{k}-\mathbf{1}) \boldsymbol{I})$.

$\overline{\mathrm{r}}(I)$ and $\mathrm{q}(n I)$

Proposition 1.3 ([OWY5, Proposition 2.2])

For $\boldsymbol{I}=I_{\mathbf{Z}}$, we have
(1) $\operatorname{nr}(I)=\min \left\{n \in \mathbb{Z}_{+} \mid q((n-1) I)-q(n I)=q(n I)-q((n+1) I)\right\}$.
(2) $\overline{\mathbf{r}}(I)=\min \left\{n \in \mathbb{Z}_{+} \mid \boldsymbol{q}((n-1) I)=\boldsymbol{q}(n I)\right\}$.
(3) $\overline{\mathbf{r}}(I) \leq \boldsymbol{p}_{g}(A)+1$. If equality holds, then $\mathbf{n r}(I)=\mathbf{1}$.

For instance, if $\overline{\mathbf{r}}(\boldsymbol{I})=\mathbf{2}$, then $\mathbf{q}(\mathbf{2 I})=\mathbf{q}(\boldsymbol{I})$ holds. Hence
$\mathbf{2} \cdot \mathbf{q}(I)+\ell_{A}\left(\overline{I^{2}} / Q I\right)=\boldsymbol{q}((2 I)+\boldsymbol{q}(0 I)$
$\Rightarrow \quad \ell_{A}\left(\overline{I^{2}} / Q I\right)=p_{g}(A)-q(I)$
$\square \exists I=I_{z} \subset A$ s.t. $p_{g}(A)=2>q(I)=1>q(2 I)=\cdots q(\infty I)=0$.
So $1=n r(I)<\bar{r}(I)=3$ and $p_{g}(A)=2$.

Normal Hilbert coefficients

Proposition 1.4 ([OWY2, Theorem 3.2])

The normal Hilbert polynomial $\overline{\boldsymbol{P}}_{\mathbf{l}}(\boldsymbol{n})$ can be written as the folloiwing form:

$$
\bar{P}_{l}(n)=\bar{e}_{0}(I)\binom{n+2}{2}-\bar{e}_{1}(I)\binom{n+1}{1}+\bar{e}_{2}(I)
$$

(1) $\bar{P}_{I}(n)=\ell_{A}\left(A / \overline{I^{n+1}}\right)\left(\forall n \geq p_{g}(A)-1\right)$.
(2) $\bar{e}_{0}(I)=e_{0}(I)=-Z^{2}$.
(3) $\bar{e}_{1}(I)-\bar{e}_{0}(I)+\ell_{A}(A / I)=p_{g}(A)-q(I)$.
(4) $\overline{\mathbf{e}}_{2}(I)=p_{g}(A)-q(n I)=p_{g}(A)-q(\infty I)\left(\forall n \geq p_{g}(A)\right)$.

- Each $\overline{\mathbf{e}}_{i}(\boldsymbol{I})$ is called a normal Hilbert coefficient.

Some graded algebra (normal tangent cone etc.)

Definition 1.5

For $\boldsymbol{I}=I_{\mathbf{Z}}$,
(1) $\boldsymbol{G}(I):=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$: the associted graded ring of I.
(2) $\overline{\boldsymbol{G}}(\boldsymbol{I}):=\bigoplus_{\boldsymbol{n} \geq 0} \overline{I^{\boldsymbol{n}}} / \overline{\boldsymbol{I}^{n+1}}$: the normal tangent cone of \boldsymbol{I}.

Question: When is $\overline{\mathbf{G}}(I)$ Gorenstein

In this talk, we consider the following question for 'geometric' ideals.

Question 1.6

(1) When is $\overline{\mathbf{G}}(\boldsymbol{I})$ Cohen-Macaulay?
(2) When is $\overline{\boldsymbol{G}}(\boldsymbol{I})$ Gorenstein?

The above question is related to our previous reserach, which the following observation shows.

Proposition 1.7

If $\overline{\mathbf{G}}(\boldsymbol{I})$ is Cohen-Macaulay, then $\mathbf{n r}(\boldsymbol{I})=\overline{\mathbf{r}}(\boldsymbol{I})$.

Example: $\overline{\mathbf{G}}(I)$ is not CM

Ex 1.8

Let \boldsymbol{K} be a filed of $\operatorname{char} \boldsymbol{K} \neq \mathbf{2 , 3}$, and let $\boldsymbol{A}=\boldsymbol{K}\left[\left[\mathbf{x y}, \boldsymbol{x z}, \boldsymbol{y}^{2}, \boldsymbol{y z}, \boldsymbol{z}^{2}\right]\right]$ with $\boldsymbol{x}^{2}=\boldsymbol{y}^{6}+\boldsymbol{z}^{6}$. That is, $\boldsymbol{A}=\boldsymbol{K}[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}] / \mathfrak{a}$, where \mathfrak{a} is generated by the following polynomials:

$$
\begin{array}{lll}
a^{2}-d^{4}-d e^{3}, & a b-c d^{3}-c e^{3}, & b^{2}-d^{3} e-e^{4} \\
a c-b d, & a e-b c, & d e-c^{2}
\end{array}
$$

Then \boldsymbol{A} is an excellent normal local domain with $\boldsymbol{v}=\boldsymbol{e}+\boldsymbol{d} \mathbf{- 1}=\mathbf{5}$.

If we put $I=\left(x y, x z, y z, y^{2}, z^{4}\right)=\left(a, b, c, d, e^{2}\right) \supset \boldsymbol{Q}=\left(c, d-e^{2}\right)$, then $\boldsymbol{I}=\boldsymbol{I} \boldsymbol{z}$ and $\mathbf{1}=\mathbf{n r}(\boldsymbol{I})<\overline{\mathbf{r}}(\boldsymbol{I})=\mathbf{3}$.
In particular, $\overline{\boldsymbol{G}}(\boldsymbol{I})$ is NOT Cohen-Macaulay.
On the other hand, $\mathbf{G}(\boldsymbol{I})$ is Cohen-Macaulay.

$\boldsymbol{p}_{\mathrm{g}}$-ideal

Definition 1.9 ([OWY1])

An ideal $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{Z}}$ is called a \boldsymbol{p}_{g}-ideal if it satisfies one of the following equivalent conditions:
(1) $\bar{r}(I)=1$.
(2) $q(I)=p_{g}(A)$.
(3) $\overline{\mathbf{e}}_{1}(I)-\bar{e}_{0}(I)+\ell_{A}(A / I)=0$.
(4) $\bar{e}_{2}(I)=0$.
(6) I is normal and stable.

- $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{Z}}$ is normal if $\overline{\boldsymbol{I}^{\boldsymbol{n}}}=\boldsymbol{I}^{\boldsymbol{n}}$ for every $\boldsymbol{n} \geq \mathbf{1}$.
- $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{Z}}$ is stable if $\boldsymbol{I}^{\mathbf{2}}=\boldsymbol{Q} \boldsymbol{I}$ for some minimal reduction \boldsymbol{Q} of \boldsymbol{I}.

Proposition 1.10

\boldsymbol{A} is a rational singularity (i.e. $\left.\boldsymbol{p}_{\mathbf{g}}(\boldsymbol{A})=\mathbf{0}\right) \Longleftrightarrow \forall I=\boldsymbol{I}_{\mathbf{Z}}$ is a $\boldsymbol{p}_{\boldsymbol{g}}$-ideal.

$\overline{\boldsymbol{G}}(I)$ of p_{g}-ideals

Proposition 1.11 ([ORWY])

If I is a p_{g}-ideal, then
(1) $\overline{\mathbf{G}}(\boldsymbol{I})=\mathbf{G}(\boldsymbol{I})$ is Cohen-Macaulay.
(2) $\overline{\mathcal{R}}(\boldsymbol{I})=\mathcal{R}(I)$ is a Cohen-Macaulay normal domain.

An ideal $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{Z}}$ is called good if \boldsymbol{I} is stable with $\boldsymbol{I}=\boldsymbol{Q}: \boldsymbol{I}$.

Theorem 1.12

Suppose that I is a p_{g}-ideal. Then the following conditions are equivalent:
(1) $\overline{\mathbf{G}}(\boldsymbol{I})=\boldsymbol{G}(\boldsymbol{I})$ is Gorenstein.
(2) I is good.

Elliptic ideal

Definition 1.13 ([OWRY, Theorem 3.2])

An ideal $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{z}}$ is called a elliptic ideal if it satisfies one of the following equivalent conditions:
(1) $\overline{\mathbf{r}}(I)=2$.
(2) $p_{g}(A)>q(I)=q(\infty I)$.
(3) $\bar{e}_{1}(I)-\bar{e}_{0}(I)+\ell_{A}(A / I)=\bar{e}_{2}(I)>0$.

Theorem 1.14 ([ORWY, Corollary 3.7])

\boldsymbol{A} is an elliptic singularity $\Longrightarrow \overline{\mathbf{r}}(\boldsymbol{I}) \leq \mathbf{2}$ for any $\boldsymbol{I}=\boldsymbol{I}_{\mathbf{z}}$.
How about the converse?

Main Question

Question 1.15

Assume that I is an elliptic ideal.
(1) When is $\bar{G}(I)$ Cohen-Macaulay?
(2) When is $\bar{G}(I)$ Gorenstein?

Theorem 1.16 ([ORWY], Huneke)

If \boldsymbol{I} is elliptic ideal, then $\overline{\mathbf{G}}(\boldsymbol{I})$ is Cohen-Macaulay.

Main result

The following theorem gives a characterization for Gorensteinness of $\overline{\mathbf{G}}(\boldsymbol{I})$ for any elliptic ideal I.

Theorem 2.1

Assume \boldsymbol{A} is Gorenstein and $\overline{\mathbf{r}}(\boldsymbol{I})=\mathbf{2}$.
Then the following conditions are equivalent:
(1) $\bar{G}(I)$ is Gorenstein.
(2) $\boldsymbol{Q}: \boldsymbol{I}=\boldsymbol{Q}+\overline{\boldsymbol{I}^{2}}$ holds true.
(3) $\boldsymbol{\ell}_{\boldsymbol{A}}\left(\boldsymbol{I}^{2} / \mathbf{Q}\right)=\boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{A} / \boldsymbol{I})$ holds true.
(4) $\overline{\mathbf{e}}_{\mathbf{2}}(\boldsymbol{I})=\boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{A} / \mathbf{I})$ holds true.
(6) $K \mathbf{Z}=-\boldsymbol{Z}^{2}$, that is, $\chi(Z)=\mathbf{0}$.

Sketch of the proof $(2) \Longrightarrow(1)$

Theorem $1.16 \Rightarrow \overline{\boldsymbol{G}}:=\overline{\mathbf{G}}(\boldsymbol{I})$ is Cohen-Macaulay.
Then $\boldsymbol{a}^{*}, \boldsymbol{b}^{*} \in \overline{\boldsymbol{G}}$ forms a $\overline{\mathbf{G}}$-sequence, where $\boldsymbol{Q}=(\boldsymbol{a}, \boldsymbol{b})$.
If we put $\boldsymbol{B}=\overline{\boldsymbol{G}} /\left(\boldsymbol{a}^{*}, \boldsymbol{b}^{*}\right) \cong \boldsymbol{A} / \boldsymbol{I} \oplus \boldsymbol{I} /\left(\boldsymbol{Q}+\overline{\boldsymbol{I}^{2}}\right) \oplus\left(\boldsymbol{Q}+\overline{\mathbf{I}^{2}}\right) / \boldsymbol{Q}$, then
\bar{G} : Gorenstein \Longleftrightarrow B: Gorenstein.
$(2) \Rightarrow(1): E T S: \operatorname{dim}_{K} \operatorname{Soc}(B)=1$.
Let $\boldsymbol{x}^{*} \in \operatorname{Soc}(\boldsymbol{B})$, a homogeneous element.
When $\boldsymbol{x}^{*} \in \boldsymbol{B}_{0}, \boldsymbol{x}^{*} \boldsymbol{B}_{\mathbf{2}}=\mathbf{0} \Rightarrow \boldsymbol{x} \in \boldsymbol{Q}:\left(\boldsymbol{Q}+\overline{\boldsymbol{I}^{2}}\right) \stackrel{(2)}{=} \boldsymbol{Q}:(\boldsymbol{Q}: \boldsymbol{I})=\boldsymbol{I}$.
When $x^{*} \in B_{1}, x^{*} B_{1}=0 \Rightarrow x \in Q: I=Q+\overline{I^{2}}$.
Hence $\operatorname{Soc}(\boldsymbol{B}) \subset \operatorname{Soc}\left(\boldsymbol{B}_{2}\right) \cong \boldsymbol{K}$, as required.
(1) $\overline{\boldsymbol{G}}(I)$ is Gorenstein.
(2) $\boldsymbol{Q}: \boldsymbol{I}=\boldsymbol{Q}+\overline{\boldsymbol{I}^{2}}$.

Sketch of the proof $(1) \Longrightarrow(2) \Longleftrightarrow(3)$

(Obs i) Huneke-Itoh's theorem (i.e. $\boldsymbol{Q} \cap \overline{\boldsymbol{I}^{2}}=\boldsymbol{Q} \boldsymbol{I}$)
$\Longrightarrow \boldsymbol{\ell}_{\boldsymbol{A}}\left(\boldsymbol{B}_{2}\right)=\boldsymbol{\ell}_{\boldsymbol{A}}\left(\boldsymbol{Q}+\overline{\boldsymbol{I}^{2}} \boldsymbol{Q}\right)=\boldsymbol{\ell}_{\boldsymbol{A}}\left(\overline{\boldsymbol{I}^{2}} / \mathbf{Q} \cap \overline{\boldsymbol{I}^{2}}\right)=\boldsymbol{\ell}_{\boldsymbol{A}}\left(\overline{\boldsymbol{I}^{2}} / \boldsymbol{Q}\right)$.
(Obs ii) Matlis duality
$\Rightarrow \boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{Q}: \boldsymbol{I} / \boldsymbol{Q})=\boldsymbol{\ell}_{\boldsymbol{A}}\left(\boldsymbol{K}_{\boldsymbol{A} / \mathbf{I}}\right)=\boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{A} / \boldsymbol{I})=\boldsymbol{\ell}_{\boldsymbol{A}}\left(\boldsymbol{B}_{0}\right)$.
(Obs iii) $\overline{\mathbf{r}} \boldsymbol{I})=\mathbf{2} \Rightarrow \overline{I^{2}} \subset \overline{I^{3}}=\mathbf{Q} \boldsymbol{I}^{2} \Rightarrow \boldsymbol{Q}+\overline{\boldsymbol{I}^{2}} \subset \boldsymbol{Q}: \boldsymbol{I}$.

$$
\therefore \ell_{A}\left(B_{0}\right)-\ell_{A}\left(B_{2}\right)=\ell_{A}\left(Q: I / Q+\overline{I^{2}}\right)=\ell_{A}\left(\overline{I^{2}} / Q I\right)-\ell_{A}(A / I) .
$$

Hence this implies $(\mathbf{1}) \Longrightarrow(2) \Longleftrightarrow(3)$.
(1) $\overline{\boldsymbol{G}}(\boldsymbol{I})$ is Gorenstein.
(2) $\boldsymbol{Q}: \mathbf{I}=\boldsymbol{Q}+\overline{\boldsymbol{I}^{2}}$.
(3) $\boldsymbol{\ell}_{\boldsymbol{A}}\left(\overline{I^{2}} / Q I\right)=\boldsymbol{\ell}_{\boldsymbol{A}}(\mathbf{A} / \boldsymbol{I})$.

Sketch of the proof $(3) \Longleftrightarrow(4) \Longleftrightarrow(5)$

Assume $\overline{\mathbf{r}}(I)=\mathbf{2}$. Then $\boldsymbol{q}(I)=\mathbf{q}(\mathbf{2 I})=\boldsymbol{q}(\infty I)$.
(Obs i) Prop. $1.2 \Longrightarrow \boldsymbol{\ell}_{\boldsymbol{A}}\left(\overline{I^{2}} / Q I\right)=\boldsymbol{p}_{\boldsymbol{g}}(A)-\boldsymbol{q}(I)$.
(Obs ii) Prop. $1.4 \Longrightarrow \overline{\boldsymbol{e}}_{\mathbf{2}}(\boldsymbol{I})=\boldsymbol{p}_{\boldsymbol{g}}(\boldsymbol{A})-\boldsymbol{q}(\infty \boldsymbol{I})\left(=\boldsymbol{\ell}_{\boldsymbol{A}}\left(\overline{\boldsymbol{I}^{2}} / \boldsymbol{Q I}\right)\right)$.
(Obs iii) Kato's Riemann-Roch formula

$$
\begin{aligned}
& \ell_{A}(A / I)+q(I)=\chi(Z)+p_{g}(A), \text { where } \chi(Z)=-\frac{Z^{2}+K Z}{2} . \\
\Rightarrow & \chi(Z)=\ell_{A}(A / I)-\left\{p_{g}(A)-q(I)\right\} .
\end{aligned}
$$

Hence $\quad \boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{A} / \boldsymbol{I})-\boldsymbol{\ell}_{\mathbf{A}}\left(\overline{\boldsymbol{I}^{2}} / Q I\right)=\boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{A} / \boldsymbol{I})-\overline{\mathbf{e}}_{2}(\boldsymbol{I})=\chi(\boldsymbol{Z})$.
(3) $\boldsymbol{\ell}_{\boldsymbol{A}}\left(\overline{I^{2}} / Q I\right)=\boldsymbol{\ell}_{A}(\mathbf{A} / \mathbf{I})$.
(4) $\bar{e}_{2}(I)=\boldsymbol{\ell}_{\boldsymbol{A}}(\boldsymbol{A} / \boldsymbol{I})$.
(5) $\chi(\boldsymbol{Z})=\mathbf{0}$, that is, $\boldsymbol{K} \boldsymbol{Z}=\boldsymbol{-} \boldsymbol{Z}^{\mathbf{2}}$.

Strongly elliptic ideal

Definition 2.2 ([OWRY, Theorem 3.9])

An ideal $\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{z}}$ is called a strongly elliptic ideal if it satisfies one of the following equivalent conditions:
(1) $\overline{\mathbf{r}}(\boldsymbol{I})=2$ and $\boldsymbol{\ell}_{\boldsymbol{A}}\left(\overline{\boldsymbol{I}^{2}} / Q I\right)=\mathbf{1}$ for some min. reduction \boldsymbol{Q} of \boldsymbol{I}.
(2) $p_{g}(A)-1=q(I)=q(\infty I)$.
(3) $\bar{e}_{2}(I)=1$.

A (resp. A Gorenstein) local ring \boldsymbol{A} is called a strongly elliptic singularity (resp. minimally elliptic singularity) if $\boldsymbol{p}_{\mathrm{g}}(\boldsymbol{A})=\mathbf{1}$.

Theorem 2.3 ([ORWY, Theorem 3.14])

\boldsymbol{A} is a strong elliptic singularity
\Rightarrow any $\boldsymbol{I}=\mathbf{I}_{\mathbf{Z}}$ is either a $\mathbf{p}_{\mathbf{g}}$-ideal or a strongly elliptic ideal.

When is $\overline{\mathbf{G}}(\mathfrak{m})$ Gorenstein

In what follows, we always assume that \boldsymbol{A} is Gorenstein.
When is $\overline{\boldsymbol{G}}(\mathfrak{m})$ Gorenstein?

Proposition 2.4

(1) $\overline{\mathbf{r}}(\mathfrak{m}) \leq \mathbf{2} \Longrightarrow \overline{\mathbf{G}}(\mathrm{m})$ is Gorenstein.
(2) If $\boldsymbol{p}_{g}(A) \leq \mathbf{2} \Rightarrow \overline{\boldsymbol{G}}(\mathrm{m})$ is Gorenstein.

If $\overline{\mathbf{r}}(\mathfrak{m})=\mathbf{1}$, then \mathfrak{m} is good.
If $\overline{\mathbf{r}}(\mathbf{m})=\mathbf{2}$, then \mathfrak{m} satisfies the condition of the theorem.
$\boldsymbol{p}_{\mathbf{g}}(\boldsymbol{A})=\mathbf{2}(\boldsymbol{A}$:Gor. $) \stackrel{\text { Yau }}{\Rightarrow} \boldsymbol{A}$: elliptic $\stackrel{\text { Okuma }}{\Rightarrow} \overline{\mathbf{r}}(\boldsymbol{I}) \leq \mathbf{2}$ for $\forall I=\boldsymbol{I}_{\mathbf{z}}$.

Geometric genus

Lemma 2.5
$A=K[[x, y, z]] /\left(x^{a}+y^{b}+z^{c}\right)$

$$
\Longrightarrow p_{g}(A)=\sum_{n=0}^{a(A)} \operatorname{dim}_{K} A_{n}
$$

For example, we consider $A=\mathbb{C}[[x, y, z]] /\left(x^{2}+y^{3}+z^{6 g+1}\right)$. Put $\operatorname{deg}(\boldsymbol{x})=\mathbf{3}(\mathbf{6 g}+\mathbf{1}), \operatorname{deg}(\boldsymbol{y})=\mathbf{2}(\mathbf{6 g}+\mathbf{1})$, and $\operatorname{deg}(\boldsymbol{z})=\mathbf{6}$. Then $a(A)=6(6 g+1)-\{\mathbf{3}(6 g+1)+2(6 g+1)+6\}=6 g-5$.

$$
\therefore p_{g}(A)=\sum_{n=0}^{6 g-5} \operatorname{dim}_{K} A_{n}=\sharp\left\{1, z, z^{2}, \ldots, z^{g-1}\right\}=g .
$$

When is $\overline{\mathbf{G}}(\mathfrak{m})$ Gorenstein: Examples (1)

Ex 2.6

Let $\mathbf{g} \geq 1$ be an integer.
(1) $A=\mathbb{C}[[x, y, z]] /\left(x^{2}+y^{3}+z^{6 g+1}\right)$.

$$
p_{g}(A)=g, \bar{r}(\mathfrak{m})=1,
$$

$$
\overline{\boldsymbol{G}}(\mathfrak{m})=\boldsymbol{G}(\mathfrak{m}) \cong \boldsymbol{K}[\boldsymbol{X}, \boldsymbol{Y}] /\left(\boldsymbol{X}^{2}\right) \text { is Gorenstein. }
$$

(2) $A=\mathbb{C}[[x, y, z]] /\left(x^{2}+y^{4}+z^{4 g}\right)$

$$
\begin{aligned}
& p_{g}(A)=g, \bar{r}(\mathfrak{m})=2, \bar{G}(\mathfrak{m}) \text { is Gorenstein. Indeed, } \\
& \bar{G}(\mathfrak{m}) \cong \begin{cases}\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{4}+Z^{4}\right) & \text { (if } \boldsymbol{g}=\mathbf{1}) \\
\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{4}\right) & \text { (o.e.) }\end{cases}
\end{aligned}
$$

When is $\overline{\mathbf{G}}(\mathfrak{m})$ Gorenstein: Examples (2)

(1) $\exists \boldsymbol{A}$ which satisfies $\overline{\mathbf{r}}(\mathbf{m})=\mathbf{3}$ and $\overline{\mathbf{G}}(\mathbf{m})$ is Not Gorenstein.
(2) $\exists \boldsymbol{A}$ which satisfies $\boldsymbol{p}_{\boldsymbol{g}}(\boldsymbol{A})=\mathbf{3}$ and $\overline{\boldsymbol{G}}(\mathbf{m})$ is Not Gorenstein.

$$
\begin{aligned}
& \text { Ex } 2.7 \\
& \boldsymbol{A}=\mathbb{C}[[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}]] /\left(\mathbf{x}^{\mathbf{3}}+\boldsymbol{y}^{\mathbf{5}}+\mathbf{z}^{\mathbf{5}}\right) \text {. } \\
& \text { Then } \overline{\mathbf{r}}(\mathfrak{m})=\boldsymbol{p}_{\boldsymbol{g}}(\boldsymbol{A})=\mathbf{3} \text {, and that } \overline{\boldsymbol{G}}(\mathfrak{m}) \text { is Not Gorenstein }
\end{aligned}
$$

Application: Elliptic ideals in Gorenstein elliptic singularity

Using geometric tools, we give the following finiteness therorem.

Theorem 2.8

Assume that \boldsymbol{A} is an elliptic Gorenstein singularity.
If we put $\mathcal{G}_{\text {ell }}:=\left\{\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{Z}} \subset \boldsymbol{A} \mid \boldsymbol{I}\right.$ is elliptic, $\overline{\boldsymbol{G}}(\boldsymbol{I})$ is Gorenstein $\}$, then we have $\#\left(\mathcal{G}_{\text {ell }}\right) \leq \boldsymbol{p}_{g}(A)$.
\boldsymbol{A} is called an elliptic singularuty if $\chi(\boldsymbol{D}) \geq \mathbf{0}$ for any cycle $\boldsymbol{D}>\mathbf{0}$ and $\chi(\boldsymbol{F})=\mathbf{0}$ for some cycle $\boldsymbol{F}>\mathbf{0}$.

Question 2.9
For any Gorentein local ring \boldsymbol{A}, is the set $\mathcal{G}_{\text {ell }}$ above a finite set?

Application: Elliptic ideals in Gorenstein elliptic singularity

Ex 2.10

Let $\boldsymbol{A}=\mathbb{C}[[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}]] /\left(\boldsymbol{x}^{2}+\boldsymbol{z}\left(\boldsymbol{z}^{\mathbf{4 n + 2}}+\boldsymbol{y}^{\mathbf{4}}\right)\right)$ and

$$
B=\mathbb{C}[x, y, z] /\left(x^{2}+y^{3}+z^{6(2 n+1)}\right) .
$$

Then both \boldsymbol{A} and \boldsymbol{B} are elliptic Gorenstein singularities with the same resolution graph.
(1) $p_{g}(A)=n+1$ and $\sharp\left(G_{\text {ell }}\right)=n$.

In fact, $\mathcal{G}_{\text {ell }}=\left\{\left(x, y, z^{j}\right) \mid j=1,2, \ldots, n\right\}$.
(2) $p_{g}(B)=2 n+1$ and $G_{\text {ell }}=\emptyset$.

Note: $\overline{\boldsymbol{G}}(\mathfrak{m})$ is Gorenstein. But $\mathfrak{m} \subset \boldsymbol{B}$ is not an elliptic ideal but a good p_{g}-ideal.

Thank you very much for your attention!

References

－【OWY1】T．Okuma，K．－i．Watanabe，and K．Yoshida，Good ideals and $\boldsymbol{p}_{\mathrm{g}}$－ideals in two－dimensional normal singularities，Manuscripta Math． 150 （2016），no．3－4，499－520．
－【OWY2】T．Okuma，K．－i．Watanabe，and K．Yoshida，Rees algebras and $\boldsymbol{p}_{\mathrm{g}}$－ideals in a two－dimensional normal local domain，Proc．Amer． Math．Soc． 145 （2017），no．1，39－47．
－【OWY4】T．Okuma，K．－i．Watanabe，and K．Yoshida，Normal reduction numbers for normal surface singularities with application to elliptic singularities of Brieskorn type，Acta Math．Vietnamica， 44 （2019），no．1，87－100．
－【OWY5】T．Okuma，K．－i．Watanabe，and K．Yoshida，The normal reduction number of two－dimensional cone－like singularities，Proc． Amer．Math．Soc． 149 （2021），4569－4581．
－【ORWY】T．Okuma，M．E．Rossi，K．－i．Watanabe，and K．Yoshida， Normal Hilbert coefficients and elliptic ideals in normal two－dimensional singularities，to appear in Nagoya Math．J．（2022）．

