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1. Introduction

Throughout this talk,

e R = ®,en R, is a Noetherian N-graded ring such that Ry is an
Artinian local ring and R = Ry[Ry], where N={0,1,2,...}.

e M= ®,cy M, is a finitely generated N-graded R-module.

We set d :=dim R and s := dimp M.
As is well known, Je;(M) € Z for i = 0,1, ..., s such that

4 : ; n+s—i
> (M) = > (-1) 'e’(M)'< s—i )
k=0 i=0
for n>> 0. We call e;(M) the i-th Hilbert coefficient of M.
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In particular, eg( M) is the multiplicity of M, which is a classical and
useful invariant of M. Although many important facts on eq( M) are
known, let us focus our attention on the following well-known result.
Let f1,f,...,fs € Ry be an sop for M. Then we have
e0(,\4) é ‘€R( M/(f;la f27' ) fs)M)
and the equality holds if and only if M is a CM R-module.
The purpose of my talk is to give a generalization of this result,

which is an assertion on e;(M) for Vi = 0.
We will see that Hilbert coefficients have depth sensitivity.
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2. Definition of Hilbert coefficients

Let t be an indeterminate. We set A :=1 — t and

Py =Y Lg(My)-t" € Z[[t]].

neN

Then we have A®-Py € Z[ t].

Definition 2.1 (Hilbert coefficients of M)
L8 prn|  izo,
ForVie Z, e(M):={ " dt =1
0 if i <0.
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It is easy to see that max{i € Z | ¢;(M) # 0} = deg A°-P), and
(1) APy =) _ e(M)-(t—1),

ieN
which is the Taylor series expansion around t = 1. Let us notice that

t—1l=-Aand Al =1+t+t2+.---€Z[t]].
Hence, multiplying A=(5*1) to the both sides of (1), we get

A™1Py = (=1) - ei(M) - ATCTH.
ieN
Then, comparing the coefficients of the term of t”, we see that

Z (M) = Y o) ()

holds for n > 0.
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3. How to compute Hilbert coefficients

Proposition 3.1
For Vi,Vr € N, we have

e(M(~r) = i}() e (M),

j=0
where M(—r) denotes the N-graded R-module with grading given by
M,., fn=r
M(=r)], = L
[(M(=n)] { 0 ifn<r.

In particular, for 0 < Vr € N, we have
eo(M(—r)) = eo(M) and e (M(—r)) =e1i(M) +r-eo(M).
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Proposition 3.2
Let 0 < r € Nand f € R, be M-regular. Then, for Vi € N,

ei(M/fM) :min{il’r} (5) cei_js1(M).

J=1

In particular, if f € Ry is M-regular, e;(M/fM) = e;(M) for Vi € N
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Proposition 3.3

Let R be a polynomial ring over a field with d variables of degree 1.

If M has an N-graded R-free resolution
0—FO — ... - FO) _ L FO _ ¢
such that FU) = @,y R(—r)% for Vj =0,1,...,¢, then

(M) = Y {EZI ‘*S*f-ﬁjr}-(,.+;_s)

r=i+d—s J
holds for Vi € N .
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Proposition 3.4
Suppose that a filtration
0=MOC MO CMAC...C MO =M
of N-graded R-modules of M is given.For Vj = 1,2, ... ¢, we set
sj := dimg MU) /MUY
Let us take Vi € N and set
N ={jeN|l1=j<lands=s—i}.
Then we have

ei(M) = Y (=1)"9 ey gpi( MY /MUD).

JEN;

K. Nishida (Chiba Univ.) Hilbert coefficients November 14, 2022

9/15



4. M-filter-regular sequence

Definition 4.1 (N. V. Trung)

An element f € Ry is said to be M-filter-regular if {g(0:y ) < co.
A sequence of elements fi,...,f, € Ry is said to be M-filter-regular if

fiis M/(f, ..., fi_1)M-filter-regular for Vi =1,... r,

where (fi, ..., fi_1)M denotes the zero module when /i = 1.

Of course, any M-regular sequence is an M-filter-regular sequence.
On the other hand, if fi,...,f;, € Ry form an sop for M, then
(fi,...,f)R can be generated by an M-filter-regular sequence.
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5. Depth sensitivity of Hilbert coefficients

Theorem 5.1

Let s >0and 0 </ < s.If we choose fi,...,f_; € Ry so that
they form an M-filter-regular sequence, we have

dmrM/(fy,.... ;)M =i
and the following assertions hold.
(1) If iis even, then e;(M) < e;(M/(f,...,fc_))M).
(2) If iis odd, then e;(M) > e;(M/(f,...,f_;)M).
(3) ei(M)=¢e;(M/(f,...,fs—i))M) & depthy M >s— .
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6. Examples
In this section, let R = K|[x, y, z, w] be a polynomial ring over a field,
which is a graded ring such that degx = degy = degz =degw = 1.

o — _ Xy 2z
Setm.—(x,y,z,w)RandA.—R/p,wherep—IZ(y s W).

Example 6.1
(1) Ais Cohen-Macaulay, dimg A =2, and x, w is A-regular.

(2) eo(A) =3, e1(A) =2, and ¢;(A) =0 for Vi = 2.

In fact, by the theorem of Hilbert-Burch, A has an R-free resolution
0— R(-3?—R(-2}—R—A—0.
Moreover, (x, w)R + p = (x, y?, z%, w)R is m-primary.

K. Nishida (Chiba Univ.) Hilbert coefficients November 14, 2022 12/15



Next, we set B := R/mp.
Example 6.2
(1) dimg B =2 and depthy B=0.
(2) x,w is a B-filter-regular sequence.
(3) eo(B) =3,e1(B) =2 and ey(B) =3.
(4) eo(B/(x,w)B) =6 and ¢;(B/xB) = —1.

In fact, we get (1), (2) and (3) by considering the exact sequence
0—p/mp—B—A—0.
Moreover, we get (4) applying Proposition 3.4 to the filtration
0 C (x,w)B/xB C B/xB,

whose quotient modules can be studied easily as we have

(x,w)B/xB = (A/xA)(—1) and B/(x,w)B = Kly,z]/(y,z)3.
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Finally, we set C := R/pq, where q = (x,y)R,and f :=x+y+z.
Example 6.3

(1) dimg C =2 and depth, C =1.

(2) w,f is a C-filter-regular sequence.

(3) eo(C)=4,e1(C)=2and e(C)=-3

(4) eo(C/(w,f)C) =6 and e;(C/wC) =2.

In fact, we get (3) applying Proposition 3.4 to the filtration
0CxCcqCg C,
whose quotient modules can be studied easily as we have
xC = A(-1), 4C/xC = (A/xA)(~1), C/aC = Kly,2]/(y.2)} .

We get eo(C/(w, f)C) =6 as C/(w,f)C = K|y, z]/(y,z)3.
For computing e;(C/wC), we use 0 C (x,w)C/wC C C/wC.
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Thank you.
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