On the Ehrhart ring of the stable set polytope of a cycle graph

Mitsuhiro MIYAZAKI (Kyoto University of Education)
November 18, 2022
cf. arXiv:2205.01409v1

For sets X, Y,
$\# X$: the cardinality of X.
$Y^{X}:=\{f \mid f: X \rightarrow Y\}$.
For a finite set X, we identify \mathbb{R}^{X} with $\mathbb{R}^{\# X}$, the Euclidean space.
For $f, f_{1}, f_{2} \in \mathbb{R}^{X}$ and $a \in \mathbb{R}$, we define maps $f_{1} \pm f_{2}$ and $a f$ by

$$
\begin{gathered}
\left(f_{1} \pm f_{2}\right)(x)=f_{1}(x) \pm f_{2}(x) \\
(a f)(x)=a(f(x))
\end{gathered}
$$

for $x \in X$.
For a subset A of X, we define the characteristic function $\chi_{A} \in \mathbb{R}^{X}$ by

$$
\chi_{A}(x)=1 \text { for } x \in A \text { and } \chi_{A}(x)=0 \text { for } x \in X \backslash A .
$$

For a nonempty subset \mathscr{X} of \mathbb{R}^{X}, we define

$$
\begin{aligned}
\text { conv } \mathscr{X} & :=(\text { the convex hull of } \mathscr{X}), \\
\text { aff } \mathscr{X} & :=(\text { affine span of } \mathscr{X})
\end{aligned}
$$

relint $\mathscr{X}:=($ the interior of \mathscr{X} in the topological space aff $\mathscr{X})$.

Definition 1 Let X be a finite set and $\xi \in \mathbb{R}^{X}$. For $B \subset X$, we set $\xi^{+}(B):=$ $\sum_{b \in B} \xi(b)$. We define the empty sum to be 0 , i.e., $\xi^{+}(\emptyset)=0$.

In this talk, all graphs are finite simple graphs without loop.
For a graph G with vertex set V and edge set E we denote $G=(V, E)$ or $V=V(G)$ and $E=E(G)$.
If $\{a, b\} \in E$, where $a, b \in V$, we say that a and b are adjacent.
A clique of G is a subset K of V such that any two elements of K are adjacent. If $v_{1}, v_{2}, \ldots, v_{r}$ are distinct vertices of G with $r \geq 3,\left\{v_{i}, v_{i+1}\right\} \in E$ for $1 \leq i \leq$ $r-1$ and $\left\{v_{r}, v_{1}\right\} \in E$, then we say that $v_{1} v_{2} \cdots v_{r} v_{1}$ is a cycle (of length r). A cycle with even (resp. odd) length is called an even (resp. odd) cycle.
Suppose that $v_{1} v_{2} \cdots v_{r} v_{1}$ is a cycle. If $\left\{v_{i}, v_{j}\right\} \in E$ and $2 \leq|i-j| \leq r-2$, we say that $\left\{v_{i}, v_{j}\right\}$ is a chord of the cycle $v_{1} v_{2} \cdots v_{r} v_{1}$.

Definition 2 If a graph G consists of one cycle without chord, we say that G is a cycle graph.

Definition $3 S \subset V$ is called a stable set if $\{a, b\} \notin E$ for any $a, b \in S$. We set

$$
\operatorname{STAB}(G):=\operatorname{conv}\left\{\chi_{S} \in \mathbb{R}^{V} \mid S \text { is a stable set of } G\right\}
$$

and call the stable set polytope of G.
Remark 4 It is clear that for $f \in \operatorname{STAB}(G)$,
(1) $0 \leq f(x) \leq 1$ for any $x \in V$.
(2) $f^{+}(K) \leq 1$ for any clique K in G.
(3) $f^{+}(C) \leq \frac{\# C-1}{2}$ for any odd cycle C.

Definition 5 We set

$$
\operatorname{TSTAB}(G):=\left\{\begin{array}{l|l}
f \in \mathbb{R}^{V} & \begin{array}{l}
f \text { satisfies }(1) \text { and }(3) \text { above and } f^{+}(e) \leq \\
1 \text { for any } e \in E
\end{array}
\end{array}\right\}
$$

If $\operatorname{STAB}(G)=\operatorname{TSTAB}(G)$, then G is called a t-perfect graph.

Remark $6 \operatorname{STAB}(G) \subset \operatorname{TSTAB}(G)$.

Fact 7 Every cycle graph is t-perfect.
\mathbb{K} : a field.
X : a finite set.
\mathscr{P} : a rational convex polytope in \mathbb{R}^{X}.
$-\infty$: a new element with $-\infty \notin X$.
$X^{-}:=X \cup\{-\infty\}$.
$\left\{T_{x}\right\}_{x \in X^{-}}$: a family of indeterminates indexed by X^{-}.
For $f \in \mathbb{Z}^{X^{-}}$, we denote the Laurent monomial $\prod_{x \in X^{-}} T_{x}^{f(x)}$ in $\mathbb{K}\left[T_{x}^{ \pm 1} \mid x \in X^{-}\right]$ by T^{f}.
Set $\operatorname{deg} T_{x}=0$ for $x \in X$ and $\operatorname{deg} T_{-\infty}=1$.

Definition 8 The Ehrhart ring of \mathscr{P} over a field \mathbb{K} is the subring

$$
\mathbb{K}\left[T^{f}\left|f \in \mathbb{Z}^{X^{-}}, f(-\infty)>0, \frac{1}{f(-\infty)} f\right|_{X} \in \mathscr{P}\right]
$$

of the Laurent polynomial ring $\mathbb{K}\left[T_{x}^{ \pm 1} \mid x \in X^{-}\right]$.
We denote the Ehrhart ring of \mathscr{P} over \mathbb{K} by $E_{\mathbb{K}}[\mathscr{P}]$.
Fact $9 E_{\mathbb{K}}[\mathscr{P}]$ is a Noetherian normal and Cohen-Macaulay domain.
Remark $10 \operatorname{dim} E_{\mathbb{K}}[\mathscr{P}]=\operatorname{dim} \mathscr{P}+1$.

Fact 11 The ideal

$$
\bigoplus_{>0,\left.\frac{1}{f(-\infty)} f\right|_{X} \in \operatorname{relint} \mathscr{P}} \mathbb{K} T^{f}
$$

of $E_{\mathbb{K}}[\mathscr{P}]$ is the canonical module of $E_{\mathbb{K}}[\mathscr{P}]$.
We denote the ideal of Fact 11 by $\omega_{E_{\mathbb{K}}[\mathscr{P}]}$ and call the canonical ideal of $E_{\mathbb{K}}[\mathscr{P}]$.

Definition 12 Let R be a commutative ring and M an R-module. We set

$$
\operatorname{tr}(M):=\sum_{\varphi \in \operatorname{Hom}(M, R)} \varphi(M)
$$

and call $\operatorname{tr}(M)$ the trace of M.

Fact 13 (Herzog-Hibi-Stamate) Let R be a Cohen-Macaulay local or graded ring over a field with canonical module ω_{R}. Then for $\mathfrak{p} \in \operatorname{Spec}(R), R_{\mathfrak{p}}$ is Gorenstein if and only if $\mathfrak{p} \not \supset \operatorname{tr}\left(\omega_{R}\right)$. In particular, R is Gorenstein if and only if $\operatorname{tr}\left(\omega_{R}\right)=R$.

Fact 14 (Ohsugi-Hibi, Hibi-Tsuchiya) Let $G=(V, E)$ be a cycle graph. Then the Ehrhart ring $E_{\mathbb{K}}[\operatorname{STAB}(G)]$ of the stable set polytope of G is Gorenstein if and only if the length of the cycle V is even or less than 7 .

In the rest of this talk, we assume that $G=(V, E)$ is an odd cycle graph with length at least 7.
We set $V=\left\{v_{0}, v_{1}, \ldots, v_{2 \ell}\right\}$, where ℓ is an integer with $\ell \geq 3$ and $E=$ $\left\{\left\{v_{i}, v_{i+1}\right\} \mid 0 \leq i \leq 2 \ell-1\right\} \cup\left\{\left\{v_{2 \ell}, v_{0}\right\}\right\}$.
Further, We set $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $0 \leq i \leq 2 \ell-1$ and $e_{2 \ell}=\left\{v_{2 \ell}, v_{0}\right\}$ and $R=E_{\mathbb{K}}[\operatorname{STAB}(G)]$. Then

$$
\begin{aligned}
\operatorname{STAB}(G) & =\operatorname{TSTAB}(G) \\
& =\left\{\nu \in \mathbb{R}^{V} \left\lvert\, \begin{array}{l}
\nu\left(v_{i}\right) \geq 0, \nu^{+}\left(e_{i}\right) \leq 1 \text { for } 0 \leq i \leq 2 \ell \text { and } \\
\nu^{+}(V) \leq \ell
\end{array}\right.\right\}
\end{aligned}
$$

Definition 15 For $n \in \mathbb{Z}$, we set

$$
t \mathcal{U}^{(n)}:=\left\{\begin{array}{l|l}
\mu \in \mathbb{Z}^{V^{-}} & \begin{array}{l}
\mu(x) \geq n \text { for any } x \in V \\
\mu^{+}(e)+n \leq \mu(-\infty) \text { for any } e \in E \text { and } \\
\mu^{+}(V)+n \leq \ell \mu(-\infty)
\end{array}
\end{array}\right\}
$$

Then

$$
R=\bigoplus_{\mu \in \mathcal{U} \mathcal{U}^{(0)}} \mathbb{K} T^{\mu} \quad \text { and } \quad \omega_{R}=\bigoplus_{\mu \in \mathcal{U} \mathcal{U}^{(1)}} \mathbb{K} T^{\mu}
$$

Set

$$
\mathfrak{p}_{i}=\mathbb{K}\left\{T^{\mu} \mid \mu \in t \mathcal{U}^{(0)}, \mu\left(v_{i}\right)>0 \text { or } \mu^{+}(V)<\ell \mu(-\infty)\right\}
$$

and

$$
\mathscr{P}_{i}=\left\{f \in \mathbb{R}^{V} \mid f\left(v_{i}\right)=0 \text { and } f^{+}(V)=\ell\right\}
$$

for $0 \leq i \leq 2 \ell$.
Then \mathscr{P}_{i} is a face of $\operatorname{STAB}(G)$ corresponding to \mathfrak{p}_{i}, i.e., $E_{\mathbb{K}}\left[\mathscr{P}_{i}\right]=R / \mathfrak{p}_{i}$.

Lemma $16 \operatorname{dim} \mathscr{P}_{i}=\ell$ for any i.

Theorem 17

$$
\sqrt{\operatorname{tr}\left(\omega_{R}\right)}=\bigcap_{i=0}^{2 \ell} \mathfrak{p}_{i}
$$

In particular, non-Gorenstein locus of R is a closed subset of $\operatorname{Spec} R$ of dimension $\ell+1$.

Let $S=\bigoplus_{n \geq 0} S_{n}$ be a Cohen-Macaulay graded ring, ω_{S} the graded canonical module of S
and $a(S)$ the a-invariant of S.
If there is an exact sequence

$$
0 \rightarrow S \rightarrow \omega_{S}(-a) \rightarrow M \rightarrow 0
$$

with $M=0$ or M is an Ulrich module, i.e., $e(M)=\mu(M)$, then we say that S is an almost Gorenstein ring.

Remark $18 e(M) \geq \mu(M)$ in general.
Theorem $19 R$ is almost Gorenstein.

We define $\nu_{i} \in \mathbb{R}^{V}$ by

$$
\nu_{i}\left(v_{j}\right)= \begin{cases}1, & j-i \equiv 0,2,4, \ldots, 2 \ell-2 \quad(\bmod 2 \ell+1) \\ 0, & \text { otherwise }\end{cases}
$$

and $\mu \in \mathbb{R}^{V^{-}}$by

$$
\mu_{i}(x)= \begin{cases}\nu_{i}(x), & x \in V, \\ 1, & x=-\infty\end{cases}
$$

for $0 \leq i \leq 2 \ell$.

Lemma $20 \mu_{i} \in t \mathcal{U}^{(0)}$ for $0 \leq i \leq 2 \ell$ and $T^{\mu_{0}}, \ldots, T^{\mu_{2 \ell}}$ are algebraically independent.

Set $R^{(0)}=\mathbb{K}\left[T^{\mu_{0}}, \ldots, T^{\mu_{2 \ell}}\right]$ and define $\eta_{k} \in \mathbb{Z}^{V^{-}}$by

$$
\eta_{k}(x)= \begin{cases}k, & x \in V \\ 2 k+1, & x=-\infty\end{cases}
$$

for $1 \leq k \leq \ell-1$.
Remark $21 \eta_{k} \in t \mathcal{U}^{(1)}$ and $T^{\eta_{1}}$ is an element of ω_{R} with minimum degree. In particular, $a(R)=-3$.

Lemma 22 Let $\varphi: R \rightarrow \omega_{R}(3)$ be the R-linear map with $\varphi(1)=T^{\eta_{1}}$. Then

$$
\operatorname{Cok} \varphi=\bigoplus_{k=2}^{\ell-1} R^{(0)} T^{\eta_{k}}
$$

Corollary 23

$$
e(\operatorname{Cok} \varphi)=\mu(\operatorname{Cok} \varphi)
$$

Definition 24 An h-vector $\left(h_{0}, h_{1}, \ldots, h_{s}\right), h_{s} \neq 0$ of a Cohen-Macaulay standard graded ring is called flawless if
(1) $h_{i} \leq h_{s-i}$ for $0 \leq i \leq\lfloor s / 2\rfloor$ and
(2) $h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor s / 2\rfloor}$.

Hibi conjectured in 1989 that any Cohen-Macaulay standard graded domain has a flawless h-vector. Niesi-Robbiano constructed a Cohen-Macaulay standard graded domain whose h-vector is $(1,3,5,4,4,1)$, a counter example of Hibi's conjecture. Hibi-Tsuchiya computed the h-vector of the Ehrhart rings of the cycle graphs of length up to 11 and disproved Hibi's conjecture again. They also made the following Conjecture 25.

Let $\left(h_{0}, h_{1}, \ldots, h_{s}\right), h_{s} \neq 0$ be the h -vector of R.
Then $s=\operatorname{dim} R+a(R)=2 \ell+2-3=2 \ell-1$.

Conjecture 25 (Hibi-Tsuchiya) $h_{s}=1, h_{s-1}=h_{1}$ and $h_{s-i}=h_{i}+(-1)^{i}$ for $2 \leq i \leq\lfloor s / 2\rfloor$.

Theorem 26 Conjecture 25 is true.

As a corollary of Theorem 26, we see the following.

Corollary 27 There is an infinite sequence of standard graded Cohen-Macaulay domains whose h-vectors are not flawless.

$$
\begin{aligned}
& a=-4, \\
& n=1, s=7, h_{4}=h_{3}-1, \\
& n=3, s=9, h_{5}=h_{4}-2, \\
& n=5, s=11, h_{6}=h_{5}-15, \\
& n=7, s=13, h_{7}=h_{6}-154,
\end{aligned}
$$

$$
n=9, s=15, h_{8}=h_{7}+5670
$$

