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For sets X, Y,

#X: the cardinality of X.

YX ={f|f: X =Y}

For a finite set X, we identify R¥ with R#X the Euclidean space.
For f, fi, fo € RX and a € R, we define maps f; + f> and af by

(fi £ f2)(2) = fi(2) £ fa(2)
(af)(z) =a(f(x))

for z € X.
For a subset A of X, we define the characteristic function x4 € RX by

xa(z) =1for x € Aand xa(z) =0for x € X\ A.



For a nonempty subset 2~ of RX, we define
conv.Z = (the convex hull of 27),
aff 2" := (affine span of Z")

relint 2" := (the interior of £ in the topological space aff Z7).

Definition 1 Let X be a finite set and ¢ € R¥. For B C X, we set {¥(B) :=
> e &(b). We define the empty sum to be 0, i.e., £7(0) = 0.



In this talk, all graphs are finite simple graphs without loop.

For a graph G with vertex set V' and edge set E we denote G = (V,E) or
V =V(G) and E = E(G).

If {a,b} € E, where a, b € V, we say that a and b are adjacent.
A clique of G is a subset K of V such that any two elements of K are adjacent.

If vy, v, ..., v, are distinct vertices of G with r > 3, {v;,v;41} € Efor 1 <i <
r— 1 and {v.,v1} € E, then we say that vjvy - --v,v1 is a cycle (of length r). A
cycle with even (resp. odd) length is called an even (resp. odd) cycle.

Suppose that vivs - --v,v1 is a cycle. If {v;,v;} € Eand 2 < |i — j| < r —2, we
say that {v;,v;} is a chord of the cycle vivy - - - v,v1.

Definition 2 If a graph G consists of one cycle without chord, we say that G is
a cycle graph.



Definition 3 S C V is called a stable set if {a,b} ¢ E for any a, b € S. We set
STAB(G) := conv{xs € RV | S is a stable set of G}

and call the stable set polytope of G.

Remark 4 It is clear that for f € STAB(G),

(1) 0< f(x) < 1forany z € V.
(2) fH(K) <1 for any clique K in G.

(3) fH(C) < #6;71 for any odd cycle C.



Definition 5 We set

TSTAB(G) := {f cRY

f satisfies (1) and (3) above and fT(e) <
lforanye€ E '
If STAB(G) = TSTAB(G), then G is called a t-perfect graph.

Remark 6 STAB(G) C TSTAB(G).

Fact 7 Every cycle graph is t-perfect.



K: a field.

X: a finite set.

Z: a rational convex polytope in RX.

—o0: a new element with —oco ¢ X.

X~ =X U{—o0}.

{T:}zex-: a family of indeterminates indexed by X .

For f € Z* , we denote the Laurent monomial [T,y - T/ in K[TH [z € X
by T7.

Set degT, =0 for x € X and degT_, = 1.



Definition 8 The Ehrhart ring of & over a field K is the subring
- 1
KT/ | feZX  f(-0)>0,——flx € P
(7| (~20) > 0. =5 lx € 7]
of the Laurent polynomial ring K[T:*! |z € X .
We denote the Ehrhart ring of & over K by Ex[Z].

Fact 9 Ex[Z] is a Noetherian normal and Cohen-Macaulay domain.

Remark 10 dim Ex[#] = dim & + 1.



Fact 11 The ideal

@ KT/

fezXx— ,f(—oo)>0,ﬁf\x crelint &2

of Ex[Z] is the canonical module of Ex[Z].

We denote the ideal of Fact 11 by wg,[2) and call the canonical ideal of Ex[Z7].



Definition 12 Let R be a commutative ring and M an R-module. We set

(M= 3 o)

p€eHom(M,R)

and call tr(M) the trace of M.

Fact 13 (Herzog-Hibi-Stamate) Let R be a Cohen-Macaulay local or graded
ring over a field with canonical module wg. Then for p € Spec(R), R, is Goren-
stein if and only if p p tr(wg). In particular, R is Gorenstein if and only if
tr(wgr) = R.

Fact 14 (Ohsugi-Hibi, Hibi-Tsuchiya) Let G = (V,E) be a cycle graph.
Then the Ehrhart ring Ex [STAB(G)] of the stable set polytope of G is Gorenstein
if and only if the length of the cycle V' is even or less than 7.



In the rest of this talk, we assume that G = (V, E) is an odd cycle graph with
length at least 7.

We set V. = {vg,v1,...,09}, where ¢ is an integer with ¢ > 3 and E =
{{1)7;,1)1'+1} | 0 § 7 S 20 — 1} U {{’Uzg,’l]o}}.

Further, We set e; = {v;,v;41} for 0 < i < 20— 1 and ey
R = Ex[STAB(G)]. Then

{vae,v9} and

STAB(G) = TSTAB(G)

= {VG]RV

(1)>0 v (i)glforogig%and}
vH(V) < '
Definition 15 For n € Z, we set

| w(x) = n forany z €V,
U™ = peZV | ptle) +n < p(—oo) for any e € E and
pr (V) +n < u(—o0)
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Then
R= @ KT#* and wgr= @ KT*#.

netid(©) petd @)
Set
pi = K{T" | p e U p(v;) > 0 or p* (V) < fu(—00)}
and
P ={f eRY | f(v;)=0and fH(V) =1}
for 0 <4 < 2/.

Then &; is a face of STAB(G) corresponding to p;, i.e., Ex[Z] = R/p;.

Lemma 16 dim &; = ¢ for any i.
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Theorem 17 g
Vir(wg) = ﬂpi.
i=0

In particular, non-Gorenstein locus of R is a closed subset of SpecR of dimension
¢+ 1.
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Let S = @nZO S, be a Cohen-Macaulay graded ring,
wg the graded canonical module of S
and a(S) the a-invariant of S.

If there is an exact sequence
0— 8 — ws(—a) > M —0,

with M = 0 or M is an Ulrich module, i.e., e(M) = u(M), then we say that S is
an almost Gorenstein ring.

Remark 18 e(M) > u(M) in general.

Theorem 19 R is almost Gorenstein.
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We define v; € RV by

oy L Ji=024..90-2 (mod 2+ 1),
vitti) = o, otherwise

and u € RV by
/M@Z{W@% rel

r = —00

for 0 <4 < 2/.

1 0 0
0 0 1 0 0 1
1/0:1 0 V1:O 1 ]/2:1 0
0 1 1 0 0 1
1 0 0 1 1 0
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1 1
vg =0 0
1 0
0 1
Lemma 20 pu; € tU® for 0 < i < 2¢ and Tro, ..., TH2 are algebraically

independent.
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Set RO = K[T#o, ... T#¢] and define n, € ZV by

() = k, reV,
T = 2k + 1, T = —00,

for1<k</¢-—-1.

Remark 21 n € tU (1) and T™ is an element of wg with minimum degree. In
particular, a(R) = —3.
Lemma 22 Let ¢: R — wgr(3) be the R-linear map with ¢(1) = 7. Then

-1
Cokyp = @ RO
k=2

Corollary 23
e(Coky) = u(Cokep).

16



Definition 24 An h-vector (hg, h1,...,hs), hs # 0 of a Cohen-Macaulay stan-
dard graded ring is called flawless if

(1) h; < hg_; for 0 <i<[s/2] and

(2) ho <hg <--- Shts/zj-

Hibi conjectured in 1989 that any Cohen-Macaulay standard graded domain
has a flawless h-vector. Niesi-Robbiano constructed a Cohen-Macaulay standard
graded domain whose h-vector is (1,3, 5,4, 4, 1), a counter example of Hibi’s con-
jecture. Hibi-Tsuchiya computed the h-vector of the Ehrhart rings of the cycle
graphs of length up to 11 and disproved Hibi’s conjecture again. They also made
the following Conjecture 25.
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Let (hg, h1,...,hs), hs # 0 be the h-vector of R.
Then s =dimR+a(R)=2(+2-3=2({—1.

Conjecture 25 (Hibi-Tsuchiya) hy =1, hy_1 = hy and h,_; = h; + (=1) for
2 <i<|s/2].

Theorem 26 Conjecture 25 is true.
As a corollary of Theorem 26, we see the following.

Corollary 27 There is an infinite sequence of standard graded Cohen-Macaulay
domains whose h-vectors are not flawless.
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a=—4,
n=1,s=7,hy=hsz—1,
n=3,8=09, hs =hy — 2,
n=>5,s=11, hg = hs — 15,
n="17 s=13, hy = hg — 154,

19



n=09,s=15, hs = hy + 5670,
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