On the Ehrhart ring of the stable set polytope of a cycle graph

Mitsuhiro MIYAZAKI (Kyoto University of Education)

November 18, 2022

cf. arXiv:2205.01409v1

For sets X, Y, #X: the cardinality of X. $Y^X := \{f \mid f \colon X \to Y\}.$ For a finite set X, we identify \mathbb{R}^X with $\mathbb{R}^{\#X}$, the Euclidean space. For f, $f_1, f_2 \in \mathbb{R}^X$ and $a \in \mathbb{R}$, we define maps $f_1 \pm f_2$ and af by $(f_1 \pm f_2)(x) = f_1(x) \pm f_2(x)$

$$(af)(x) = a(f(x))$$

for $x \in X$.

For a subset A of X, we define the characteristic function $\chi_A \in \mathbb{R}^X$ by

$$\chi_A(x) = 1$$
 for $x \in A$ and $\chi_A(x) = 0$ for $x \in X \setminus A$.

For a nonempty subset \mathscr{X} of \mathbb{R}^X , we define

 $\operatorname{conv} \mathscr{X} := (\operatorname{the \ convex \ hull \ of \ } \mathscr{X}),$

aff $\mathscr{X} := (affine \text{ span of } \mathscr{X})$

relint $\mathscr{X} := (\text{the interior of } \mathscr{X} \text{ in the topological space aff } \mathscr{X}).$

Definition 1 Let X be a finite set and $\xi \in \mathbb{R}^X$. For $B \subset X$, we set $\xi^+(B) := \sum_{b \in B} \xi(b)$. We define the empty sum to be 0, i.e., $\xi^+(\emptyset) = 0$.

In this talk, all graphs are finite simple graphs without loop.

For a graph G with vertex set V and edge set E we denote G = (V, E) or V = V(G) and E = E(G).

If $\{a, b\} \in E$, where $a, b \in V$, we say that a and b are adjacent.

A clique of G is a subset K of V such that any two elements of K are adjacent.

If v_1, v_2, \ldots, v_r are distinct vertices of G with $r \ge 3$, $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le r-1$ and $\{v_r, v_1\} \in E$, then we say that $v_1v_2 \cdots v_rv_1$ is a cycle (of length r). A cycle with even (resp. odd) length is called an even (resp. odd) cycle.

Suppose that $v_1v_2\cdots v_rv_1$ is a cycle. If $\{v_i, v_j\} \in E$ and $2 \leq |i-j| \leq r-2$, we say that $\{v_i, v_j\}$ is a chord of the cycle $v_1v_2\cdots v_rv_1$.

Definition 2 If a graph G consists of one cycle without chord, we say that G is a cycle graph.

Definition 3 $S \subset V$ is called a stable set if $\{a, b\} \notin E$ for any $a, b \in S$. We set

 $STAB(G) := conv \{ \chi_S \in \mathbb{R}^V \mid S \text{ is a stable set of } G \}$

and call the stable set polytope of G.

Remark 4 It is clear that for $f \in STAB(G)$,

(1) 0 ≤ f(x) ≤ 1 for any x ∈ V.
(2) f⁺(K) ≤ 1 for any clique K in G.
(3) f⁺(C) ≤ #C-1/2 for any odd cycle C.

Definition 5 We set

$$\text{TSTAB}(G) := \left\{ f \in \mathbb{R}^V \middle| \begin{array}{c} f \text{ satisfies (1) and (3) above and } f^+(e) \leq \\ 1 \text{ for any } e \in E \end{array} \right\}.$$

If STAB(G) = TSTAB(G), then G is called a t-perfect graph.

Remark 6 $STAB(G) \subset TSTAB(G)$.

Fact 7 Every cycle graph is t-perfect.

 $\mathbb{K}:$ a field.

X: a finite set.

 \mathscr{P} : a rational convex polytope in \mathbb{R}^X .

 $-\infty$: a new element with $-\infty \notin X$.

 $X^- := X \cup \{-\infty\}.$

 ${T_x}_{x\in X^-}$: a family of indeterminates indexed by X^- .

For $f \in \mathbb{Z}^{X^-}$, we denote the Laurent monomial $\prod_{x \in X^-} T_x^{f(x)}$ in $\mathbb{K}[T_x^{\pm 1} \mid x \in X^-]$ by T^f .

Set deg $T_x = 0$ for $x \in X$ and deg $T_{-\infty} = 1$.

Definition 8 The Ehrhart ring of \mathscr{P} over a field \mathbb{K} is the subring

$$\mathbb{K}[T^f \mid f \in \mathbb{Z}^{X^-}, f(-\infty) > 0, \frac{1}{f(-\infty)}f|_X \in \mathscr{P}]$$

of the Laurent polynomial ring $\mathbb{K}[T_x^{\pm 1} \mid x \in X^-]$.

We denote the Ehrhart ring of \mathscr{P} over \mathbb{K} by $E_{\mathbb{K}}[\mathscr{P}]$.

Fact 9 $E_{\mathbb{K}}[\mathscr{P}]$ is a Noetherian normal and Cohen-Macaulay domain.

Remark 10 dim $E_{\mathbb{K}}[\mathscr{P}] = \dim \mathscr{P} + 1.$

Fact 11 The ideal

$$\bigoplus_{f\in \mathbb{Z}^{X^-}, f(-\infty)>0, \frac{1}{f(-\infty)}f|_X \in \operatorname{relint} \mathscr{P}} \mathbb{K}T^f$$

of $E_{\mathbb{K}}[\mathscr{P}]$ is the canonical module of $E_{\mathbb{K}}[\mathscr{P}]$.

We denote the ideal of Fact 11 by $\omega_{E_{\mathbb{K}}[\mathscr{P}]}$ and call the canonical ideal of $E_{\mathbb{K}}[\mathscr{P}]$.

Definition 12 Let R be a commutative ring and M an R-module. We set

$$\operatorname{tr}(M) := \sum_{\varphi \in \operatorname{Hom}(M,R)} \varphi(M)$$

and call tr(M) the trace of M.

Fact 13 (Herzog-Hibi-Stamate) Let R be a Cohen-Macaulay local or graded ring over a field with canonical module ω_R . Then for $\mathfrak{p} \in \operatorname{Spec}(R)$, $R_{\mathfrak{p}}$ is Gorenstein if and only if $\mathfrak{p} \not\supset \operatorname{tr}(\omega_R)$. In particular, R is Gorenstein if and only if $\operatorname{tr}(\omega_R) = R$.

Fact 14 (Ohsugi-Hibi, Hibi-Tsuchiya) Let G = (V, E) be a cycle graph. Then the Ehrhart ring $E_{\mathbb{K}}[STAB(G)]$ of the stable set polytope of G is Gorenstein if and only if the length of the cycle V is even or less than 7. In the rest of this talk, we assume that G = (V, E) is an odd cycle graph with length at least 7.

We set $V = \{v_0, v_1, \dots, v_{2\ell}\}$, where ℓ is an integer with $\ell \geq 3$ and $E = \{\{v_i, v_{i+1}\} \mid 0 \leq i \leq 2\ell - 1\} \cup \{\{v_{2\ell}, v_0\}\}.$

Further, We set $e_i = \{v_i, v_{i+1}\}$ for $0 \le i \le 2\ell - 1$ and $e_{2\ell} = \{v_{2\ell}, v_0\}$ and $R = E_{\mathbb{K}}[STAB(G)]$. Then

$$\begin{aligned} \text{STAB}(G) &= \text{TSTAB}(G) \\ &= \left\{ \nu \in \mathbb{R}^V \middle| \begin{array}{l} \nu(v_i) \ge 0, \ \nu^+(e_i) \le 1 \text{ for } 0 \le i \le 2\ell \text{ and} \\ \nu^+(V) \le \ell \end{array} \right\}. \end{aligned}$$

Definition 15 For $n \in \mathbb{Z}$, we set

$$t\mathcal{U}^{(n)} := \left\{ \mu \in \mathbb{Z}^{V^-} \middle| \begin{array}{l} \mu(x) \ge n \text{ for any } x \in V, \\ \mu^+(e) + n \le \mu(-\infty) \text{ for any } e \in E \text{ and} \\ \mu^+(V) + n \le \ell\mu(-\infty) \end{array} \right\}.$$

Then

$$R = \bigoplus_{\mu \in t\mathcal{U}^{(0)}} \mathbb{K} T^{\mu} \quad \text{ and } \quad \omega_R = \bigoplus_{\mu \in t\mathcal{U}^{(1)}} \mathbb{K} T^{\mu}.$$

Set

$$\mathfrak{p}_i = \mathbb{K}\{T^{\mu} \mid \mu \in t\mathcal{U}^{(0)}, \mu(v_i) > 0 \text{ or } \mu^+(V) < \ell\mu(-\infty)\}$$

and

$$\mathscr{P}_i = \{ f \in \mathbb{R}^V \mid f(v_i) = 0 \text{ and } f^+(V) = \ell \}$$

for $0 \leq i \leq 2\ell$.

Then \mathscr{P}_i is a face of $\mathrm{STAB}(G)$ corresponding to \mathfrak{p}_i , i.e., $E_{\mathbb{K}}[\mathscr{P}_i] = R/\mathfrak{p}_i$.

Lemma 16 dim $\mathscr{P}_i = \ell$ for any *i*.

Theorem 17

$$\sqrt{\operatorname{tr}(\omega_R)} = \bigcap_{i=0}^{2\ell} \mathfrak{p}_i.$$

In particular, non-Gorenstein locus of R is a closed subset of $\operatorname{Spec} R$ of dimension $\ell+1.$

Let $S = \bigoplus_{n \ge 0} S_n$ be a Cohen-Macaulay graded ring, ω_S the graded canonical module of Sand a(S) the *a*-invariant of S. If there is an exact sequence

$$0 \to S \to \omega_S(-a) \to M \to 0,$$

with M = 0 or M is an Ulrich module, i.e., $e(M) = \mu(M)$, then we say that S is an almost Gorenstein ring.

Remark 18 $e(M) \ge \mu(M)$ in general.

Theorem 19 R is almost Gorenstein.

We define $\nu_i \in \mathbb{R}^V$ by

$$\nu_i(v_j) = \begin{cases} 1, & j-i \equiv 0, 2, 4, \dots, 2\ell - 2 \pmod{2\ell + 1}, \\ 0, & \text{otherwise} \end{cases}$$

and $\mu \in \mathbb{R}^{V^-}$ by

$$\mu_i(x) = \begin{cases} \nu_i(x), & x \in V, \\ 1, & x = -\infty \end{cases}$$

for $0 \leq i \leq 2\ell$.

. . .

Lemma 20 $\mu_i \in t\mathcal{U}^{(0)}$ for $0 \leq i \leq 2\ell$ and $T^{\mu_0}, \ldots, T^{\mu_{2\ell}}$ are algebraically independent.

Set $R^{(0)} = \mathbb{K}[T^{\mu_0}, \dots, T^{\mu_{2\ell}}]$ and define $\eta_k \in \mathbb{Z}^{V^-}$ by

$$\eta_k(x) = \begin{cases} k, & x \in V, \\ 2k+1, & x = -\infty, \end{cases}$$

for $1 \leq k \leq \ell - 1$.

Remark 21 $\eta_k \in t\mathcal{U}^{(1)}$ and T^{η_1} is an element of ω_R with minimum degree. In particular, a(R) = -3.

Lemma 22 Let $\varphi \colon R \to \omega_R(3)$ be the *R*-linear map with $\varphi(1) = T^{\eta_1}$. Then

$$\operatorname{Cok}\varphi = \bigoplus_{k=2}^{\ell-1} R^{(0)} T^{\eta_k}$$

Corollary 23

$$e(\operatorname{Cok}\varphi) = \mu(\operatorname{Cok}\varphi).$$

Definition 24 An h-vector (h_0, h_1, \ldots, h_s) , $h_s \neq 0$ of a Cohen-Macaulay standard graded ring is called flawless if

- (1) $h_i \leq h_{s-i}$ for $0 \leq i \leq \lfloor s/2 \rfloor$ and
- (2) $h_0 \leq h_1 \leq \cdots \leq h_{\lfloor s/2 \rfloor}$.

Hibi conjectured in 1989 that any Cohen-Macaulay standard graded domain has a flawless h-vector. Niesi-Robbiano constructed a Cohen-Macaulay standard graded domain whose h-vector is (1, 3, 5, 4, 4, 1), a counter example of Hibi's conjecture. Hibi-Tsuchiya computed the h-vector of the Ehrhart rings of the cycle graphs of length up to 11 and disproved Hibi's conjecture again. They also made the following Conjecture 25. Let (h_0, h_1, \dots, h_s) , $h_s \neq 0$ be the h-vector of R. Then $s = \dim R + a(R) = 2\ell + 2 - 3 = 2\ell - 1$.

Conjecture 25 (Hibi-Tsuchiya) $h_s = 1$, $h_{s-1} = h_1$ and $h_{s-i} = h_i + (-1)^i$ for $2 \le i \le \lfloor s/2 \rfloor$.

Theorem 26 Conjecture 25 is true.

As a corollary of Theorem 26, we see the following.

Corollary 27 There is an infinite sequence of standard graded Cohen-Macaulay domains whose h-vectors are not flawless.

$$a = -4,$$

$$n = 1, s = 7, h_4 = h_3 - 1,$$

$$n = 3, s = 9, h_5 = h_4 - 2,$$

$$n = 5, s = 11, h_6 = h_5 - 15,$$

$$n = 7, s = 13, h_7 = h_6 - 154,$$

 $n = 9, s = 15, h_8 = h_7 + 5670,$