LEVELNESS VERSUS NEARLY GORENSTEINNESS OF HOMOGENEOUS DOMAINS

SORA MIYASHITA

ABSTRACT. Levelness and nearly Gorensteinness are well-studied properties of graded rings as a generalized notion of Gorensteinness. In this presentation, we compare the strength of these properties. We show that for any homogeneous affine semigroup ring, if it is nearly Gor with CM-type and projective dimension both 2, then it is level and its Hilbert series has nice form.

1. Preliminaries

Let k be a field, and let R be an N-graded k-algebra with a unique graded maximal ideal **m**. We will always assume that R is CM and admits a canonical module ω_R .

• For a graded R-module M, we use the following notation:

— Fix an integer k. Let M(-k) denote the R-module whose grading is given by $M(-k)_n = M_{n-k}$ for any $n \in \mathbb{Z}$.

$$\operatorname{tr}_R(M) = \sum_{\phi \in \operatorname{Hom}_R(M,R)} \phi(M)$$

is called trace ideal of R. When there is no risk of confusion about the ring we simply write tr(M).

• Let r(R) be CM-type.

Let us recall the definitions and facts of the nearly Gorensteinness and levelness of graded rings.

Definition 1.1 (see [Sta, Chapter III, Proposition 3.2]). R is *level* \Leftrightarrow all the degrees of the minimal generators of ω_R are the same.

Definition 1.2 (see [HHS, Definition 2.2]). *R* is *nearly Gorenstein* \Leftrightarrow tr(ω_R) \supseteq **m**. In particular, *R* is Gor \Leftrightarrow tr(ω_R) = *R*.

We recall some definitions about affine semigroups.

Definition 1.3. An affine semigroup S is a fin.gen. sub-semigroup of \mathbb{N}^d .

S is homogeneous \Leftrightarrow all its minimal generators lie on an affine hyperplane not including origin. \Leftrightarrow the affine semigroup ring $\Bbbk[S]$ is standard graded by assigning degree one to all the monomials corresponding to the minimal generators of S. In that case, we also say that $\Bbbk[S]$ is homogeneous.

Theorem 1.4 (see [HHS, Corollary 3.5]). Let $S = \mathbb{k}[x_1, \dots, x_n]$ be a polynomial ring, let $\mathbf{n} = (x_1, \dots, x_n)R$ and let

$$\mathbb{F}: 0 \to F_p \xrightarrow{A} F_{p-1} \to \cdots \to F_1 \to F_0 \to R \to 0$$

be a graded minimal free S-resolution of the CM ring R = S/J with $J \subseteq \mathbf{n}^2$. Let $I_1(A)$ be an ideal of R generated by all components of representation matrix of A. If r(R) = 2 and dim R > 0, then $I_1(\phi_p) = \mathbf{n} \Leftrightarrow R$ is nearly Gor.

2. Examples: Nearly Gorensteinness versus levelness

We consider the following question.

Question 2.1. If R is nearly Gor, then is R level?

The following example show that in the case of non-domains, nearly Gorensteinness does not imply levelness.

Example 2.2. Let $S = \mathbb{Q}[x, y, z]$ be a graded polynomial ring with deg x = deg y = deg z = 1. Consider a homogeneous ideal $I = (xz, yz, y^3)$ and define R = S/I, then the graded minimal free resolution of R is as follows.

$$0 \to S(-3) \oplus S(-4) \xrightarrow[]{\begin{array}{c} -y & 0 \\ x & -y^2 \\ 0 & z \end{array}} S(-2)^{\oplus 2} \oplus S(-3) \to S \to R \to 0.$$

Thus r(R) = 2 and R is not level, and R is CM because dimR = depthR = 1 > 0. Then, R is nearly Gor by Theorem 1.4.

Even if R is a domain, if it is not standard graded, we can find an example of nearly Gorenstein but not level.

Example 2.3 (see [HHS, Remark 6.2]). Consider numerical semigroup ring $R = \mathbb{k}[t^5, t^6, t^7]$, then R is not level but nearly Gor by Theorem 1.4.

Next, we consider the case of the CM standard graded domain. Surprisingly, even in that case, we can find the following example.

Example 2.4. Let $S = \mathbb{Q}[x, y, z]$ be a graded polynomial ring with deg x = deg y = deg z = 1. Consider a homogeneous prime ideal $P = (x^3 - y^2 z, x^2 y - xyz - z^3, y^3 - xyz - xz^2 - z^3)$ and define R = S/P, then the graded minimal free resolution of R is as follows.

$$0 \rightarrow S(-4) \oplus S(-5) \xrightarrow[-z]{\begin{array}{cc} -y & yz+z^2 \\ x+z & -y^2-z^2 \\ -z & x^2-xz+z^2 \end{array}} S(-3)^{\oplus 3} \rightarrow S \rightarrow R \rightarrow 0$$

Thus R is not level but nearly Gor by Theorem 1.4.

We reached the following Question.

Question 2.5. Let $R = \Bbbk[S]$ be a CM homog affine semigroup ring. If R is nearly Gor, then is R level?

We state the necessary results about the minimal free resolution of the codimension 2 lattice ideal based on [PS].

Definition 2.6. Let $S = \Bbbk[x_1, \dots, x_n]$ be a polynomial ring and let L be any sublattice of \mathbb{Z} . We put $\mathbf{x}^{\mathbf{a}} := x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ where $\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathbb{N}^n$. Then its associated *lattice ideal* in S is

$$I_L := (\mathbf{x}^{\mathbf{a}} - \mathbf{x}^{\mathbf{b}} ; \mathbf{a}, \mathbf{b} \in \mathbb{N}^n \ and \ \mathbf{a} - \mathbf{b} \in L).$$

Prime lattice ideals are called *toric ideals*. Prime binomial ideals and toric ideals are identical.

Proposition 2.7 (see [PS, Comments 5.9 (a) and Theorem 6.1 (ii)]). Let $S = \Bbbk[x_1, \dots, x_n]$ be a polynomial ring. If I is a codimension 2 lattice ideal of S and the number of minimal generators of I is 3, then R = S/I is CM and the graded minimal free resolution of R is the following form.

$$0 \to S^2 \xrightarrow[]{\begin{array}{ccc} u_1 & u_4 \\ u_2 & u_5 \\ u_3 & u_6 \end{array}} S^3 \to S \to R \to 0,$$

where u_i is a monomial of S for all $1 \le i \le 6$.

Note that a codimension 2 prime binomial ideal I is CM but not Gor if and only if the number of minimal generators of I is 3 (see [PS, Remark 5.8 and Theorem 6.1]). We denote $|\mathbf{a}| = \sum_{k=1}^{n} a_i$ where $\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathbb{N}^n$.

Theorem 2.8. Let $d \ge 2$ and let R be a d-dimensional homog affine semigroup. If R is nearly Gor and pd(R) = r(R) = 2, then R is level and

$$H(R,t) = \frac{1 + 2\sum_{i=1}^{s} t^{i}}{(1-t)^{d}}.$$

Proof. By the assumption, there exists a codimension 2 homogeneous prime binomial ideal I such that I is minimally generated by three elements and $R \cong S/I$, where $S = \mathbb{k}[x_1, \dots, x_n]$ is a polynomial ring. Since I is a codimension 2 lattice ideal and the number of minimal generators of I is 3, R is a (n-2)-dimensional CM ring and the graded minimal free resolution of R is of the following form by Proposition 2.7.

$$0 \to S^2 \xrightarrow{A = \begin{bmatrix} u_1 & -u_4 \\ -u_2 & u_5 \\ u_3 & -u_6 \end{bmatrix}} S^3 \to S \to R \to 0.$$

Here, u_i is a monomial of S for all $1 \leq i \leq 6$. By using Hilbert-Burch Theorem (see [BH, Theorem 1.4.17]), I is minimally generated by $f_1 = u_1u_5 - u_2u_4, f_2 = u_3u_4 - u_1u_6$ and $f_3 = u_2u_6 - u_3u_5$. Since I is a prime binomial ideal, for all i = 1, 2, 3, there exist $\mathbf{a}_i, \mathbf{b}_i \in \mathbb{N}^n$ such that $f_i = \mathbf{x}^{\mathbf{a}_i} - \mathbf{x}^{\mathbf{b}_i}, |\mathbf{a}_i| = |\mathbf{b}_i|$ and $gcd(\mathbf{x}^{\mathbf{a}_i}, \mathbf{x}^{\mathbf{b}_i}) = 1$. We assume that R is nearly Gor and show that R is level.

• If d = 2, since R is nearly Gor, A may be assumed to have one of the following forms by Theorem 2.9.

(i)
$$A = \begin{bmatrix} x_1 & -x_4 \\ -x_2 & u_5 \\ x_3 & -u_6 \end{bmatrix}$$
 or (ii) $A = \begin{bmatrix} x_1 & -x_3 \\ -u_2 & x_4 \\ x_2 & -u_6 \end{bmatrix}$ or (iii) $A = \begin{bmatrix} x_1 & -x_3 \\ -x_2 & x_4 \\ u_3 & -u_6 \end{bmatrix}$.
(For example, there is also a possibility that $A = \begin{bmatrix} u_1 & -x_2 \\ -u_2 & x_3 \\ x_1 & -x_4 \end{bmatrix}$, but this can

be regarded to be the same as (i).)

In the cases of (i) and (ii), we see that all components of the matrix A are variables x_i . Then the graded minimal free resolution of R is as follows.

$$0 \to S(-3)^{\oplus 2} \to S(-2)^{\oplus 3} \to S \to R \to 0.$$

Thus R is level and $H(R,t) = H(S,t) - 3H(S(-2),t) + 2H(S(-3),t) = \frac{1+2t}{(1-t)^2}$.

(iii) Assume the case of $A = \begin{bmatrix} x_1 & -x_3 \\ -x_2 & x_4 \\ u_3 & -u_6 \end{bmatrix}$. Then the graded minimal free

resolution of R is as follows.

$$0 \to S(-N-2)^{\oplus 2} \xrightarrow{\begin{bmatrix} x_1 & -x_3 \\ -x_2 & x_4 \\ x_3^{n_1} x_4^{m_1} & -x_1^{n_2} x_2^{m_2} \end{bmatrix}} S(-N-1)^{\oplus 2} \oplus S(-2) \to S \to R \to 0,$$

where $N = \deg u_3$ Thus R is level and $H(R,t) = \frac{1 - (2t^{N+1} + t^2) + 2t^{N+2}}{(1-t)^4} =$ $\frac{1+2\sum_{i=1}^{N}t^{i}}{(1-t)^{2}}.$ • If d=3 or 4, we see that all components of the matrix A are variables x_{i} . Then

- it is clear that R is level and $H(R,t) = \frac{1+2t}{(1-t)^2}$.
- If $d \ge 5$, R cannot be nearly Gor by Theorem 1.4.

For homogeneous affine semigroup rings with type 3 or more, nearly Gorensteinness does not imply levelness in general.

Theorem 2.9. For every $3 \le d \le 5$, there exists type d non-level nearly Gor homog affine semigroup ring R_d .

Proof. The following example exist.

- $R_3 = \Bbbk[s, st^2, st^4, st^5, st^7, st^9, st^{12}, st^{17}]$ $R_4 = \Bbbk[s, st^4, st^9, st^{12}, st^{13}, st^{21}]$ $R_5 = \Bbbk[s, st^6, st^7, st^9, st^{13}, st^{15}, st^{19}]$

For general homogeneous d-dimensional affine semigroup ring R, nearly Gorensteinness does not imply the equation $H(R,t) = \frac{1+r(R)\sum_{i=1}^{s}t^i}{(1-t)^d}$. Indeed, there are many counterexamples of $pd(R) \geq 4$.

Example 2.10. $R = \Bbbk[s, st^2, st^6, st^8, st^{11}, st^{17}, st^{23}]$ is nearly Gor and

$$H(R,t) = \frac{1 + 5t + 9t^2 + 6t^3 + 2t^4}{(1-t)^2}$$

However, for 2-dimensional homogeneous affine semigroup ring R with pd(R) = 3, the following example exists.

Example 2.11. $R = \Bbbk[s, st^{99}, st^{101}, st^{200}, st^{301}]$ is nearly Gor and

$$H(R,t) = \frac{1+3\sum_{i=1}^{100} t^i}{(1-t)^2}$$

References

- [BH] W. Bruns and J. Herzog, Cohen-Macaulay rings, Revised Edition, Cambridge University Press, 1998.
- [M] Levelness versus nearly Gorensteinness of standard graded domains, arXiv:2206.00552v6, preprint.
- [HHS] J. Herzog, T. Hibi and D.I. Stamate, The trace of the canonical module, Israel J. Math. 233 (2019), 133-165.
- [PS] I. Peeva and B. Sturmfels, Syzygies of codimension 2 lattice ideals, Mathematische Zeitschrift 229 (1998), 163-194
- [Sta] R.P. Stanley, Combinatorics and commutative algebra, Second edition, Progr. Math., vol. 41, Birkhäuser, Boston, 1996.

(S. Miyashita) DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFOR-MATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, SUITA, OSAKA 565-0871, JAPAN *Email address*: miyashita.sora@ist.osaka-u.ac.jp