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This talk is based on

K. Matsushita, Conic divisorial ideals of toric rings and applications to
Hibi rings and stable set rings, arXiv:2210.02031.

Purposes of this talk ; we introduce

an idea to determine a region representing conic divisorial ideals in
the divisor class group of a toric ring.

a description of the conic divisorial ideals of stable set rings of
perfect graphs.
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Setting

Let

k be a field and [n] = {1, . . . , n} for n ∈ Z>0.

V = {v1, . . . , vn} ⊂ Zd , where each vi is primitive.

τ = Cone(V) = R≥0v1 + · · ·+ R≥0vn.

τ∨ = {x ∈ Rd : σi (x) ≥ 0 for i ∈ [n]}, where σi (−) = ⟨−, vi ⟩.

We assume that

“ dim τ = dim τ∨ = d ” and “ vi ’s are minimal generators of τ ”.

Definition

We define the toric ring

R = k[τ∨ ∩ Zd ] = k[tα1
1 · · · tαd

d : (α1, . . . , αd) ∈ τ∨ ∩ Zd ].

R is a d-dimensional Cohen-Macaulay normal domain.
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For a = (a1, . . . , an) ∈ Zn, we set

T(a) = {x ∈ Zd : σi (x) ≥ ai for i ∈ [n]}.

T (a) ; the module of R generated by all monomials whose
exponent vector is in T(a).

Remark

For a = (a1, . . . , an) ∈ Rn, we have T (a) = T (⌜a⌝), where ⌜ ⌝
means the round up and ⌜a⌝ = (⌜a1⌝, · · · , ⌜an⌝).

The module T (a) is a divisorial ideal (rank one reflexive module)
and any divisorial ideal of R takes this form. Therefore, we can
identify each a ∈ Zn with the divisorial ideal T (a).

The isomorphic classes of divisorial ideals of R one-to-one
correspond to the elements of the divisor class group Cl(R) of R.

For a, a′ ∈ Zn, T (a) ∼= T (a′) ⇔ ∃y ∈ Zd s.t. ai = a′i + σi (y) for all
i ∈ [n]. Thus, we have Cl(R) ∼= Zn/σ(Zd), where σ = (σ1, . . . , σn).
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Definition (Bruns-Gubeladze (2003))

For a ∈ Zd , we say that a divisorial ideal T (a) is conic if there exists
x ∈ Rd such that a = ⌜σ(x)⌝.

Remark

Up to isomorphism the conic divisorial ideals of R are exactly the
direct summands of R1/k for k ≫ 0, where R1/k = k[τ∨ ∩ (1/kZ)d ]
is regarded as an R-module (Smith-Van den Bergh (1997),
Bruns-Gubeladze (2003)).

Since R1/k is a maximal Cohen-Macaulay (MCM) R-module, conic
divisorial ideals of R are also MCM R-modules.

For k ≫ 0, EndR(R
1/k) is a non-commutative resolution (NCR) of

R (Špenko-Van den Bergh (2017), Faber-Muller-Smith (2019)).

The endomorphism ring of the direct sum of some conic modules of
R may be a non-commutative crepant resolution (NCCR).
→ NCCRs constructed in this way are called toric NCCRs.
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It is important to classify MCM divisorial ideals (including conic
ones) of certain class of toric rings.

Example

It is known that

a classification of MCM divisorial ideals is given in the case of toric
rings whose divisor class group are Z or Z2 (Stanley (1982), Van den
Bergh (1993)).

a description of conic divisorial ideals is also given in the case of

Hibi rings (Higashitani-Nakajima (2019)).

→ this result is correct, but its proof is insufficient.

edge rings of complete multipartite graphs (Higashitani-M. (2022)).

→ not completely determined.

We give an idea to determine a region representing conic classes in Cl(R).
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Description of conic divisorial ideals of toric rings

In what follows,

we assume that Cl(R) ∼= Zr for some r ∈ Z>0.

we fix an isomorphism ϕ : Zn/σ(Zd) → Zr .

for i ∈ [n], let βi = ϕ ◦ π(ei ), where ei is the i-th basic vector in Zn

and π : Zn → Zn/σ(Zd) is the natural epimorphism.

We define

W(R) =
{ n∑

i=1

aiβi ∈ Rr : ai ∈ [0, 1)
}
.

Proposition (Špenko-Van den Bergh (2017))

Each element of W(R) ∩ Zr one-to-one corresponds to a conic divisorial
ideal of R.
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Example

Let
τ = Cone({(1, 0, 0), (0, 1, 0), (1,−1, 1), (−1, 1, 1), (−1,−1, 3)}).

Then, the divisor class group of the toric ring R = k[τ∨ ∩ Z3] is
isomorphic to Z2. We can compute the weights:

β1 = (4, 2), β2 = (−2,−2), β3 = (−3,−1), β4 = (0, 1), β5 = (1, 0).

W(R) ∩ Z2 =

−2 ≤ z2 ≤ 2{
(z1, z2) ∈ Z2 :−2 ≤ z1 − z2 ≤ 2

}
−2 ≤ z1 − 2z2 ≤ 2

We want to determine the facet defining inequalities of a convex
polytope representing conic classes.
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We consider the lattice polytope

W ′(R) =
{ n∑

i=1

aiβi ∈ Rr : ai ∈ [0, 1]
}
.

This is the Minkowski sum of lattice segments {aiβi : ai ∈ [0, 1]}, and
hence W ′(R) is a zonotope.

Proposition (BLSWZ “Oriented Matroids” (1999))

If there exist n ∈ Zr \ {0} and βi1 , . . . , βir−1 such that βi1 , . . . , βir−1 are
linearly independent and ⟨n, βij ⟩ = 0 for all j ∈ [r − 1], then

F =
{ ∑

⟨n,βi ⟩>0

βi +
∑

⟨n,βi ⟩=0

aiβi ∈ Rr : ai ∈ [0, 1]
}

is a facet of W ′(R). Conversely, all facets of W ′(R) are obtained in this
way.
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Key Lemma

We have int(W ′(R)) = W(R).

Therefore, if we have

W ′(R) =
{
(z1, . . . , zr ) ∈ Rr : −qi − 1 ≤

r∑
j=1

cijzj ≤ pi + 1 for all i ∈ [m]
}

for some positive integers m, pi , qi and some integers cij ’s, where the
greatest common divisor of ci1, . . . , cir is equal to 1 for all i ∈ [m], then
we can get the desired representation:

W(R) ∩ Zr =
{
(z1, . . . , zr ) ∈ Zr : −qi ≤

r∑
j=1

cijzj ≤ pi for all i ∈ [m]
}
.

The equality int(W ′(R)) = W(R) holds since the weights satisfy

Z≥0β1 + · · ·+ Z≥0βn = Zr .
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Example

W ′(R) = −3 ≤ z2 ≤ 3

−3 ≤ z1 − z2 ≤ 3{
(z1, z2) ∈ R2 :−3 ≤ z1 − 2z2 ≤ 3

}
.

−5 ≤ z1 ≤ 5

−5 ≤ z1 − 3z2 ≤ 5

Therefore, we have −2 ≤ z2 ≤ 2

−2 ≤ z1 − z2 ≤ 2

W(R) ∩ Z2 =
{
(z1, z2) ∈ R2 :−2 ≤ z1 − 2z2 ≤ 2

}
.

−4 ≤ z1 ≤ 4

−4 ≤ z1 − 3z2 ≤ 4

By using this lemma, we can give a description of the conic divisorial
ideals of

Hibi rings (we can re-prove the result).

stable set rings of perfect graphs.
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Stable set rings

For a simple graph G , let

V (G ) = {1, . . . , d} denote the vertex set of G ,

E (G ) denote the edge set of G .

Definition

We say that S ⊂ V (G ) is a stable set (resp. a clique) if {v ,w} ̸∈ E (G )
(resp. {v ,w} ∈ E (G )) for any distinct vertices v ,w ∈ S . Note that the
empty set and each singleton are regarded as stable sets.

Given a subset W ⊂ V (G ), let ρ(W ) =
∑

i∈W ei ∈ Rd , where we let

ρ(∅) stands for the origin of Rd .

Definition

We define the stable set ring of G over k by setting

k[StabG ] = k[ (
∏

i∈S ti )t0 : S is a stable set of G ].

The stable set ring of G can be described as the toric ring arising
from a rational polyhedral cone if G is perfect.
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Example

We consider the following perfect graph G :

1

2 3

4

56

We can see that G has maximal stable sets {1, 2, 3}, {1, 4}, {2, 5} and
{3, 6}. Thus, we have

k[StabG ] =
k[t0, t1t0, t2t0, . . . , t6t0, t1t2t0, t1t3t0, t2t3t0, t1t2t3t0, t1t4t0, t2t5t0, t3t6t0].

In what follows, we assume that G is a perfect graph with maximal
cliques Q0,Q1, . . . ,Qn.

In this case, we have Cl(k[StabG ]) ∼= Zn (Higashitani-M. (2022)).
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For v ∈ V (G ) and multisets I , J ⊂ {0, 1, . . . , n}, let

mI (v) = |{i ∈ I : v ∈ Qi}|,

X+
IJ = {v ∈ V (G ) : mI (v)−mJ(v) > 0},

X−
IJ = {v ∈ V (G ) : mI (v)−mJ(v) < 0}.

Example

The graph G has 4 maximal cliques:

Q0 = {4, 5, 6},Q1 = {1, 5, 6},
Q2 = {2, 4, 6},Q3 = {3, 4, 5}.

1

2 3

4

56

Let I = {1, 2, 3} and J = {0, 0, 0}. Then, we can see that

mI (v) =

{
1 if v = 1, 2, 3,

2 if v = 4, 5, 6.
mJ(v) =

{
0 if v = 1, 2, 3,

3 if v = 4, 5, 6.

and
X+
IJ = {1, 2, 3}, X−

IJ = {4, 5, 6}.
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C(G ) =
{
(z1, · · · , zn) ∈ Rn :

− |J|+
∑
v∈X−

IJ

mIJ(v) + 1 ≤
∑
i∈I

zi −
∑
j∈J

zj ≤ |I |+
∑
v∈X+

IJ

mIJ(v)− 1

for multisets I , J ⊂ {0, 1, . . . , n} with |I | = |J| and I ∩ J = ∅
}
,

where mIJ(v) = mI (v)−mJ(v) and we let z0 = 0.

(continued)

We can obtain the inequality

−|J|+
∑
v∈X−

IJ

mIJ(v)+1 = −5 ≤ z1 + z2 + z3 ≤ 5 = |I |+
∑
v∈X+

IJ

mIJ(v)− 1.

In this case, we have

− 1 ≤ z1 ≤ 1

C(G ) =
{
(z1, z2, z3) ∈ R3 :− 1 ≤ z2 ≤ 1

}
.

− 1 ≤ z3 ≤ 1
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Theorem (M. (2022))

Let G be a perfect graph with n + 1 maximal cliques. Then, the conic
divisorial ideals of k[StabG ] one-to-one correspond to the points in
C(G ) ∩ Zn.

Remark

In the case of the Ehrhart ring of a chain polytope, which is the
stable set ring of the comparability graph of a poset, we expect to
be able to describe the conic class in terms of the poset.

We construct a toric NCCR for a special family of stable set rings as
an application of this theorem.
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