The canonical module and a Gorenstein criterion of a local log-regular ring

Shinnosuke Ishiro (Nihon University)

This is not in a final form. The final version will be submitted to elsewhere for publication.

1 Log structure of commutative rings

In this report, all monoids and rings are commutative. We denote Q^* the set of units of a monoid Q and Q^{gp} the group of the form of a - b for all $a, b \in Q$.

Definition 1.1. Let R be a ring, \mathcal{Q} be a monoid and let $\alpha : \mathcal{Q} \to R$ be a monoid homomorphism. Then the triple (R, \mathcal{Q}, α) is called a *log ring*. Moreover if R is local and $\alpha^{-1}(R^{\times}) = \mathcal{Q}^*$ holds, (R, \mathcal{Q}, α) is called a *local log ring*.

In the following, we consider a monoid \mathcal{Q} is a finitely generated submonoid of \mathbb{N}^l for some l > 0 that satisfies the following condition: if $q \in \mathcal{Q}^{gp}$ such that $nq \in \mathcal{Q}$, then $q \in \mathcal{Q}$ (this condition is called *saturated*).

Next, we define the log-regularity of a commutative ring.

Definition 1.2. Let (R, \mathcal{Q}, α) be a local log ring, where R is Noetherian. Let I_{α} be the ideal of R generated by the image of $\mathcal{Q} \setminus \{0\}$ under α . Then we call the local log ring a *local log-regular ring* if it satisfies the following condition:

- 1. R/I_{α} is a regular local ring,
- 2. dim $R = \dim R/I_{\alpha} + \dim Q$, where dim Q is the maximum length of the ascending chains of prime ideals of Q.

We give an example of local log-regular rings.

Example 1.3. Let \mathcal{Q} be the submonoid of \mathbb{N}^2 generated by $\langle (1,0), (1,1), (1,2), (1,3) \rangle$. Set $R := \mathbb{Z}_p[\![s, st, st^2, st^3]\!]$ and the monoid homomorphism $\alpha : \mathcal{Q} \to R$ which sends (i, j) to $s^i t^j$. Then the triple (R, \mathcal{Q}, α) is a local log-regular ring.

A class of local log-regular rings has a structure theorem such as the Cohen's structure theorem.

Theorem 1.4 (Kato). Let (R, \mathcal{Q}, α) be a local log ring, where R is Noetherian. Let k be a residue field of R. Then the following assertions hold.

1. Suppose that R is of equal characteristic. Then (R, \mathcal{Q}, α) is log-regular if and only if there exists a commutative diagram of the form

$$\begin{array}{cccc}
\mathcal{Q} \longrightarrow k \llbracket \mathcal{Q} \oplus \mathbb{N}^r \rrbracket \\
\alpha & \downarrow & \cong \downarrow \phi \\
R \longrightarrow \widehat{R},
\end{array} \tag{1}$$

where the top arrow is the natural injection and \widehat{R} is the completion of R.

2. Suppose that R is of mixed characteristic. Let C(k) be a Cohen ring of k and let p > 0 be the characteristic of k. Then (R, Q, α) is log-regular if and only if there exists a commutative diagram

where ϕ is a surjection whose kernel is a principal ideal generated by an element $\theta \in C(k) \llbracket \mathcal{Q} \oplus \mathbb{N}^r \rrbracket$ whose constant term is p.

A class of local log-regular rings has many nice properties in commutative ring theory. Here are some of them.

Theorem 1.5. Let (R, \mathcal{Q}, α) be a local log-regular ring.

- 1. (Kato) R is Cohen-Macaulay and normal.
- 2. (Gabber and Ramero) R is a splinter.
- 3. (Cai-Lee-Ma-Schwede-Tucker) Assume that R is complete. Then R is BCM-regular.

2 Main result

We give the main result of this report.

Theorem 2.1. Let (R, \mathcal{Q}, α) be a local log-regular ring and let x_1, \ldots, x_r be a sequence of elements of R such that $\overline{x_1}, \ldots, \overline{x_r}$ is a regular system of parameters for R/I_{α} . Then R has the canonical module and its form is

$$\langle (x_1 \cdots x_r) \alpha(x) \mid x \in \operatorname{relint} \mathcal{Q} \rangle,$$
 (3)

where relint \mathcal{Q} is the relative interior of \mathcal{Q} .

Remark 2.2. Professor Shunsuke Takagi pointed out to me that the ideal (3) in Theorem 2.1 is isomorphic to $\langle \alpha(x) | x \in \text{relint } Q \rangle$ because a canonical module of a local ring is unique up to isomorphism. Namely, the canonical module of a local log-regular ring has exactly the same description as a semigroup ring.

Example 2.3. Let (R, \mathcal{Q}, α) be the same as in Example 1.3. Since R/I_{α} is isomorphic to \mathbb{Z}_p , p is an element of R such that \overline{p} is a regular system of parameters for R/I_{α} . Moreover, relint \mathcal{Q} is generated by (1, 1) and (1, 2). Thus $\omega_R = \langle pst, pst^2 \rangle$.

From Theorem 2.1, we can obtain a Gorenstein criterion of a local log-regular ring.

Corollary 2.4. Let (R, \mathcal{Q}, α) be a local log-regular ring. Then the following are equivalent:

- 1. R is Gorenstein,
- 2. $k[\mathcal{Q}]$ is Gorenstein for a fixed field k,
- 3. There exists an element $c \in \operatorname{relint} \mathcal{Q}$ such that $c + \mathcal{Q} = \operatorname{relint} \mathcal{Q}$.

By combining Corollary 2.4 with the classical result about the Gorenstein criterion of two-dimensional toric singularities, we can determine the structure of local log-regular rings whose associated monoidal dimension is two.

Proposition 2.5. Let (R, \mathcal{Q}, α) be a local log-regular ring where the dimension of \mathcal{Q} is two. Then R is Gorenstein if and only if \mathcal{Q} is isomorphic to the submonoid of \mathbb{N}^2 generated by (n+1), (1,1), (0, n+1) for some $n \geq 1$.

Finally, we present the pseudo-rationality of a local log-regular ring. The proof is reduced to the complete case by the existence of a canonical module (namely, Theorem 2.1).

Proposition 2.6. Let (R, \mathcal{Q}, α) be a local log-regular ring. Then R is pseudo-rational.

References

- [CLMST22] H. Cai, S. Lee, L. Ma, K. Schwede, and K. Tucker, Perfectoid signature, perfectoid Hilbert-Kunz multiplicity, and an application to local fundamental groups, arXiv:2209.04046 (2022).
- [GR22] O. Gabber and L. Ramero, *almost rings and perfectoid rings*, math.univ-lille1. fr/~ramero/hodge.pdf.
- [INS22] S. Ishiro, K. Nakazato, and K. Shimomoto, Perfectoid towers and their tilts : with an application to the étale cohomology groups of local log-regular rings, arXiv : 2203.16400 (2022).

- [Kat94] K. Kato, Toric singularities, American Journal of Mathematics, 116 (5) 1073–1099 (1994).
- [Ogus] A. Ogus, Lectures on logarithmic geometry, Cambridge studies in advanced mathematics 178, Cambridge University Press.

E-mail address: shinnosukeishiro@gmail.com