Some examples

Taro Inagawa and Kazuhiko Kurano (Meiji University)

Assume $\operatorname{ch}(K)=0$.
(1) Suppose $(a, b, c)=(8,19,9)$. Then,

$$
\begin{aligned}
& s_{2}=6, s_{3} \\
&=1, \quad t_{1}=2, \quad t_{3}=1, \quad u_{1}=2, \quad u_{2}=1, \\
& \mathfrak{p}=\left(x^{7}-y^{2} z^{2}, y^{3}-z x^{6}, z^{3}-x y\right)
\end{aligned}
$$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

$u=3$, and

$$
\ell_{1}=6, \quad \ell_{2}=3, \quad \ell_{3}=1 .
$$

Therefore,

$$
\ell_{1}^{\prime}=1, \quad \ell_{2}^{\prime}=3, \quad \ell_{3}^{\prime}=6 .
$$

In this case, the condition EMU_{1} is satisfied (Therefore, $R_{s}(\mathfrak{p})$ is Noetherian).
(2) Suppose $(a, b, c)=(91,108,103)$. Then,

$$
\begin{array}{cc}
s_{2}=4, & s_{3}=9, \quad t_{1}=10, \quad t_{3}=1, \quad u_{1}=1, \quad u_{2}=8, \\
& \mathfrak{p}=\left(x^{13}-y^{10} z, y^{11}-z^{8} x^{4}, z^{9}-x^{9} y\right)
\end{array}
$$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

$u=9$, and
$\ell_{1}=1, \quad \ell_{2}=2, \quad \ell_{3}=4, \quad \ell_{4}=5, \quad \ell_{5}=7, \quad \ell_{6}=8, \quad \ell_{7}=10, \quad \ell_{8}=11, \quad \ell_{9}=1$.
Therefore,

$$
\ell_{1}^{\prime}=1, \quad \ell_{2}^{\prime}=1, \quad \ell_{3}^{\prime}=2, \quad \ell_{4}^{\prime}=4, \quad \ell_{5}^{\prime}=5, \quad \ell_{6}^{\prime}=7, \quad \ell_{7}^{\prime}=8, \quad \ell_{8}^{\prime}=10, \quad \ell_{9}^{\prime}=11 .
$$

In this case, the condition EMU_{1} is not satisfied (Therefore, $R_{s}(\mathfrak{p})$ is not Noetherian).
(3) Suppose $(a, b, c)=(25,29,72)$. Then,

$$
\begin{gathered}
s_{2}=7, \quad s_{3}=4, \quad t_{1}=7, \quad t_{3}=4, \quad u_{1}=1, \quad u_{2}=2, \\
\mathfrak{p}=\left(x^{11}-y^{7} z, y^{11}-z^{2} x^{7}, z^{3}-x^{4} y^{4}\right)
\end{gathered}
$$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

$u=3$, and

$$
\ell_{1}=2, \quad \ell_{2}=2, \quad \ell_{3}=1
$$

Therefore,

$$
\ell_{1}^{\prime}=1, \quad \ell_{2}^{\prime}=2, \quad \ell_{3}^{\prime}=2
$$

In this case, the condition $E M U_{1}$ is not satisfied (Therefore, $R_{s}(\mathfrak{p})$ is not Noetherian).
(4) Suppose $(a, b, c)=(17,503,169)$. Then,

$$
\begin{gathered}
s_{2}=49, \quad s_{3}=40, \quad t_{1}=2, \quad t_{3}=1, \quad u_{1}=3, \quad u_{2}=4, \\
\mathfrak{p}=\left(x^{89}-y^{2} z^{3}, y^{3}-z^{4} x^{49}, z^{7}-x^{40} y\right)
\end{gathered}
$$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

$u=7$, and

$$
\ell_{1}=2, \quad \ell_{2}=4, \quad \ell_{3}=5, \quad \ell_{4}=7, \quad \ell_{5}=5, \quad \ell_{6}=3, \quad \ell_{7}=1 .
$$

Therefore,

$$
\ell_{1}^{\prime}=1, \quad \ell_{2}^{\prime}=2, \quad \ell_{3}^{\prime}=3, \quad \ell_{4}^{\prime}=4, \quad \ell_{5}^{\prime}=5, \quad \ell_{6}^{\prime}=5, \quad \ell_{7}^{\prime}=7 .
$$

In this case, the condition $E M U_{1}$ is not satisfied (Therefore, $R_{s}(\mathfrak{p})$ is not Noetherian).
(5) Suppose $(a, b, c)=(53,48,529)$. Then,

$$
\begin{gathered}
s_{2}=19, \quad s_{3}=10, \quad t_{1}=21, \quad t_{3}=11, \quad u_{1}=1, \quad u_{2}=1, \\
\mathfrak{p}=\left(x^{29}-y^{21} z, y^{32}-z x^{19}, z^{2}-x^{10} y^{11}\right)
\end{gathered}
$$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

$u=2$, and

$$
\ell_{1}=2, \quad \ell_{2}=1
$$

Therefore,

$$
\ell_{1}^{\prime}=1, \quad \ell_{2}^{\prime}=2
$$

In this case, the condition EMU_{1} is satisfied (Therefore, $R_{s}(\mathfrak{p})$ is Noetherian).

Here, consider the triangle $2 \Delta_{\bar{t}, \bar{u}, \bar{s}}$.

$2 u=4$, and

$$
\ell_{1}=2, \quad \ell_{2}=5, \quad \ell_{3}=2, \quad \ell_{4}=1 .
$$

Therefore,

$$
\ell_{1}^{\prime}=1, \quad \ell_{2}^{\prime}=2, \quad \ell_{3}^{\prime}=2, \quad \ell_{4}^{\prime}=5 .
$$

In this case, the condition EMU_{2} is not satisfied.

