Some examples

Taro Inagawa and Kazuhiko Kurano (Meiji University)

Assume ch(K) = 0.

(1) Suppose (a, b, c) = (8, 19, 9). Then,

$$s_2 = 6$$
, $s_3 = 1$, $t_1 = 2$, $t_3 = 1$, $u_1 = 2$, $u_2 = 1$,
 $\mathbf{p} = (x^7 - y^2 z^2, y^3 - z x^6, z^3 - x y)$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

u = 3, and

$$\ell_1 = 6, \quad \ell_2 = 3, \quad \ell_3 = 1$$

Therefore,

$$\ell_1' = 1, \quad \ell_2' = 3, \quad \ell_3' = 6$$

In this case, the condition EMU_1 is satisfied (Therefore, $R_s(\mathfrak{p})$ is Noetherian).

(2) Suppose (a, b, c) = (91, 108, 103). Then,

$$s_2 = 4, \quad s_3 = 9, \quad t_1 = 10, \quad t_3 = 1, \quad u_1 = 1, \quad u_2 = 8,$$
$$\mathfrak{p} = (x^{13} - y^{10}z, y^{11} - z^8 x^4, z^9 - x^9 y)$$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

u = 9, and

 $\ell_1 = 1$, $\ell_2 = 2$, $\ell_3 = 4$, $\ell_4 = 5$, $\ell_5 = 7$, $\ell_6 = 8$, $\ell_7 = 10$, $\ell_8 = 11$, $\ell_9 = 1$. Therefore,

 $\ell'_1 = 1$, $\ell'_2 = 1$, $\ell'_3 = 2$, $\ell'_4 = 4$, $\ell'_5 = 5$, $\ell'_6 = 7$, $\ell'_7 = 8$, $\ell'_8 = 10$, $\ell'_9 = 11$. In this case, the condition EMU₁ is **not** satisfied (Therefore, $R_s(\mathfrak{p})$ is **not** Noetherian). (3) Suppose (a, b, c) = (25, 29, 72). Then,

$$s_2 = 7$$
, $s_3 = 4$, $t_1 = 7$, $t_3 = 4$, $u_1 = 1$, $u_2 = 2$,
 $\mathfrak{p} = (x^{11} - y^7 z, y^{11} - z^2 x^7, z^3 - x^4 y^4)$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

u = 3, and

$$\ell_1 = 2, \quad \ell_2 = 2, \quad \ell_3 = 1$$

Therefore,

$$\ell'_1 = 1, \quad \ell'_2 = 2, \quad \ell'_3 = 2.$$

In this case, the condition EMU_1 is not satisfied (Therefore, $R_s(\mathfrak{p})$ is not Noetherian).

(4) Suppose (a, b, c) = (17, 503, 169). Then,

$$s_2 = 49, \quad s_3 = 40, \quad t_1 = 2, \quad t_3 = 1, \quad u_1 = 3, \quad u_2 = 4,$$

 $\mathfrak{p} = (x^{89} - y^2 z^3, y^3 - z^4 x^{49}, z^7 - x^{40} y)$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

u = 7, and

$$\ell_1 = 2, \quad \ell_2 = 4, \quad \ell_3 = 5, \quad \ell_4 = 7, \quad \ell_5 = 5, \quad \ell_6 = 3, \quad \ell_7 = 1.$$

Therefore,

$$\ell'_1 = 1, \quad \ell'_2 = 2, \quad \ell'_3 = 3, \quad \ell'_4 = 4, \quad \ell'_5 = 5, \quad \ell'_6 = 5, \quad \ell'_7 = 7.$$

In this case, the condition EMU_1 is not satisfied (Therefore, $R_s(\mathfrak{p})$ is not Noetherian).

(5) Suppose (a, b, c) = (53, 48, 529). Then,

$$s_2 = 19, \quad s_3 = 10, \quad t_1 = 21, \quad t_3 = 11, \quad u_1 = 1, \quad u_2 = 1,$$

 $\mathfrak{p} = (x^{29} - y^{21}z, y^{32} - zx^{19}, z^2 - x^{10}y^{11})$

and (Assumption 1), (Assumption 2), (Assumption 3) are satisfied.

u = 2, and

$$\ell_1 = 2, \quad \ell_2 = 1.$$

Therefore,

$$\ell_1' = 1, \quad \ell_2' = 2$$

In this case, the condition EMU_1 is satisfied (Therefore, $R_s(\mathfrak{p})$ is Noetherian).

Here, consider the triangle $2\Delta_{\bar{t},\bar{u},\bar{s}}$.

2u = 4, and

 $\ell_1 = 2, \quad \ell_2 = 5, \quad \ell_3 = 2, \quad \ell_4 = 1.$

Therefore,

$$\ell'_1 = 1, \quad \ell'_2 = 2, \quad \ell'_3 = 2, \quad \ell'_4 = 5.$$

In this case, the condition EMU_2 is not satisfied.