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Let A be a commutative ring and p a prime ideal of A.

Definition (n-th symbolic power)

For any positive integer n, we put

p(n) := pnAp ∩ A

and call it the n-th symbolic power of p.

Definition (symbolic Rees ring)

We put
Rs(p) := A[pt, p(2)t2, p(3)t3, . . . ] ⊂ A[t]

and call it the symbolic Rees ring of A with respect to p.

Finite generation of the symbolic Rees ring is a very interesting and
difficult problem.

T. Inagawa and K. Kurano (Meiji Univ.) On finite generation of symbolic Rees rings November 14th, 2022 2 / 16



Let K be a field.

(Assumption 1) : a, b, c are pairwise coprime positive integers such
that

√
abc /∈ Q.

Suppose that S = K [x , y , z ] is a graded polynomial ring with
deg(x) = a, deg(y) = b, deg(z) = c .
Let p be the kernel of the K -algebra map φ : S = K [x , y , z ] → K [T ]
defined by φ(x) = T a, φ(y) = T b, φ(z) = T c .

(Assumption 2) : p is not complete intersection (i.e. p is minimally
generated by 3 elements).

Consider the symbolic Rees ring Rs(p).

Problem
Is Rs(p) Noetherian?
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Finite generation of Rs(p) depends on a, b, c and ch(K ).
There are many examples of finitely generated Rs(p).

Goto-Nishida-Watanabe (1994) : In the case of ch(K ) = 0, there are
some examples of infinitely generated Rs(p).

Remark
In the case of ch(K ) > 0, we have no example of infinitely generated
Rs(p).
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Finite generation of Rs(p) is closely related to existence of the
negative curve.

Definition (negative curve)

f ∈ [p(r)]d is called a negative curve of p, if
(1) d/r <

√
abc , and

(2) f is an irreducible polynomial.

If there exists a negative curve of p, then it is uniquely determined.

Theorem (Cutkosky)

(1) If Rs(p) is Noetherian, then there exists a negative curve of p.
(2) In the case of ch(K ) > 0, Rs(p) is Noetherian if and only if there
exists a negative curve of p.

Remark
We have no example where the negative curve of p does not exist.
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In the rest, we always assume the following three assumptions:

(Assumption 1) : a, b, c are pairwise coprime positive integers such
that

√
abc /∈ Q.

(Assumption 2) : p is not complete intersection (i.e. p is minimally
generated by 3 elements).

(Assumption 3) : A minimal generator of p is the negative curve of p.
(∃ negative curve of p with r = 1)

S = K [x , y , z ] is a graded polynomial ring with
deg(x) = a, deg(y) = b, deg(z) = c .
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Then, we know

p = I2

(
x s2 y t3 zu1

y t1 zu2 x s3

)
= (x s − y t1zu1 , y t − zu2x s2 , zu − x s3y t3)

with positive integers s2, s3, t1, t3, u1, u2 such that
s = s2 + s3, t = t1 + t3, u = u1 + u2, and moreover, we can prove
gcd(s2, s3) = gcd(t1, t3) = gcd(u1, u2) = 1.
Suppose that zu − x s3y t3 is a negative curve of p, i.e., uc <

√
abc .

We put t = −t/t3, u = −u2/u, s = s2/s3. Remark that

t < −1 < u < 0 < s

is satisfied.
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The triangle ∆t,u,s :

-

6

•

•

(0, 0)

(u,−u2)

t

u

s

∆t,u,s

Then, the Veronesean subring S (ab) of S = K [x , y , z ] is isomorphic to
the Ehrhart ring of ∆t,u,s .

T. Inagawa and K. Kurano (Meiji Univ.) On finite generation of symbolic Rees rings November 14th, 2022 8 / 16



We put Q = (v − 1,w − 1)K [v±1,w±1].

Smab =
⊕

(α,β)∈m∆t,u,s∩Z2

Kvαwβ ⊂ K [v±1,w±1]

⊂ ⊂

[p(r)]mab =

 ⊕
(α,β)∈m∆t,u,s∩Z2

Kvαwβ

 ∩ Q r

In the case of ch(K ) = 0, for n ∈ N and g = g(v ,w) ∈ K [v±1,w±1],

g ∈ Qn ⇐⇒ 0 ≦ ∀s + ∀t < n,
∂s+tg

∂v s∂w t
(1, 1) = 0.
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Definition (condition Hm)

For m ∈ N, we say that the condition Hm is satisfied, if

∃g ∈ [p(mu)]mab =

 ⊕
(α,β)∈m∆t,u,s∩Z2

Kvαwβ

 ∩ Qmu s.t.

“ the constant term (or, the coefficient of vmuw−mu2) of g ” ̸= 0.

Theorem (Huneke)

Assume (Assumption 1), (Assumption 2), (Assumption 3).
Then, Rs(p) is Noetherian if and only if ∃m ∈ N s.t. Hm is satisfied.

The condition Hm depends on ch(K ).
Hm =⇒ H2m,H3m,H4m, . . . (In particular, H1 =⇒ H2,H3,H4, . . . ).
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The triangle m∆t,u,s :

-

6

•

•

(0, 0)

(mu,−mu2)

t

u

s

m∆t,u,s

For i = 1, 2, . . . ,mu, we put

ℓi = #{(α, β) ∈ m∆t,u,s ∩ Z2 | α = i}.

Note that ℓmu = 1 and ℓi ≧ 1 for all i = 1, 2, . . . ,mu.
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We sort the sequence ℓ1, ℓ2, . . . , ℓmu into ascending order

ℓ′1 ≦ ℓ′2 ≦ · · · ≦ ℓ′mu.

=

1

Definition (condition EMUm)

For m ∈ N, we say that the condition EMUm is satisfied, if

ℓ′i ≧ i for ∀i = 1, 2, . . . ,mu.

(EMU are the initials of Ebina, Matsuura, Uchisawa)

The condition EMUm does not depend on ch(K ).
EMUm+1 =⇒ EMUm.
In the case of ch(K ) = 0, EMUm =⇒ Hm.
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Assume (Assumption 1), (Assumption 2), (Assumption 3).

Known facts
(1) In the case of ch(K ) = p > 0, Rs(p) is Noetherian. (Cutkosky,
1991) For µ ≫ 0, Hpµ is satisfied.

Assume ch(K ) = 0.
(2) If ∃m ∈ N s.t. Hm is satisfied, then H1 is satisfied.
(Kurano-Nishida, 2019)
(3) Suppose ℓ1 = 1 or ℓu−1 = 1 for ∆t,u,s (In this case, EMU1 is not
satisfied. Remark ℓu = 1 and u = u1 + u2 ≧ 2). Then, Rs(p) is not
Noetherian. (González-Karu, 2016)
(4) Suppose ℓ1 ≧ 3 and ℓu−1 ≧ 3 for ∆t,u,s . Then, EMUm is satisfied
for ∀m ∈ N (Therefore, Rs(p) is Noetherian).
(5) Suppose ℓu−1 = n ≧ 3, ℓ1 = 2, ℓ2 = 3, . . . , ℓn−1 = n and
n − 1 < u − 1 for ∆t,u,s (In this case, EMU1 is not satisfied). Then,
Rs(p) is not Noetherian. (González-Karu, 2016)
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Main theorem (arXiv:2204.01889, Theorem 1.2)

Assume (Assumption 1), (Assumption 2), (Assumption 3) and
ch(K ) = 0.
Then, Rs(p) is Noetherian if and only if EMU1 is satisfied.
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1st step of proof

Suppose that zu − x s3y t3 is a negative curve of p.
We classify ∆t,u,s for which EMU1 is not satisfied.

EMU1 is not satisfied ⇐⇒ 1 ≦ ∃k < u s.t.

ℓ′1 = 1, ℓ′2 = 2, . . . , ℓ′k−1 = k − 1 and ℓ′k = ℓ′k+1 = k .

(k is called the minimal degree of ∆t,u,s)

We may assume ℓ1 ≧ ℓu−1 by exchanging x for y if necessary. We put

F := {∆t,u,s | ℓ1 ≧ 3, ℓu−1 = 2, EMU1 is not satisfied}

and
Fn,λ := {∆t,u,s ∈ F | ℓ1 = n, min.deg. = fλ + fλ+1}

where f−1 = 0, f0 = 1, fλ+2 = (n − 1)fλ+1 − fλ.
Then, F =

⨿
n≧3, λ≧0 Fn,λ holds.
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2nd step
We prove

∀n ≧ 3, ∀λ ≧ 0, ∃∆t,u,s ∈ Fn,λ s.t. Rs(p) is not Noetherian.

3rd step
We prove

∀n ≧ 3, ∀λ ≧ 0, ∀∆t,u,s ∈ Fn,λ, Rs(p) is not Noetherian.
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