On finite generation of symbolic Rees rings

Taro Inagawa and Kazuhiko Kurano

Meiji University

Monday, November 14th, 2022 The 43rd Symposium on Commutative Algebra

Let A be a commutative ring and p a prime ideal of A.

Definition (*n*-th symbolic power)

For any positive integer n, we put

$$\mathfrak{p}^{(n)} := \mathfrak{p}^n A_\mathfrak{p} \cap A$$

and call it the *n*-th symbolic power of p.

Definition (symbolic Rees ring)

We put

$$R_{s}(\mathfrak{p}) := A[\mathfrak{p}t, \mathfrak{p}^{(2)}t^{2}, \mathfrak{p}^{(3)}t^{3}, \dots] \subset A[t]$$

and call it the symbolic Rees ring of A with respect to p.

Finite generation of the symbolic Rees ring is a very interesting and difficult problem.

Let K be a field.

(Assumption 1) : a, b, c are pairwise coprime positive integers such that $\sqrt{abc} \notin \mathbb{Q}$.

Suppose that S = K[x, y, z] is a graded polynomial ring with $\deg(x) = a$, $\deg(y) = b$, $\deg(z) = c$. Let \mathfrak{p} be the kernel of the K-algebra map $\varphi \colon S = K[x, y, z] \to K[T]$ defined by $\varphi(x) = T^a$, $\varphi(y) = T^b$, $\varphi(z) = T^c$.

(Assumption 2) : p is not complete intersection (i.e. p is minimally generated by 3 elements).

Consider the symbolic Rees ring $R_s(\mathfrak{p})$.

Problem

Is $R_s(p)$ Noetherian?

Finite generation of $R_s(\mathfrak{p})$ depends on a, b, c and ch(K). There are many examples of finitely generated $R_s(\mathfrak{p})$.

Goto-Nishida-Watanabe (1994) : In the case of ch(K) = 0, there are some examples of infinitely generated $R_s(\mathfrak{p})$.

Remark

In the case of ch(K) > 0, we have no example of infinitely generated $R_s(p)$.

Finite generation of $R_s(p)$ is closely related to existence of the negative curve.

Definition (negative curve)

 $f \in [\mathfrak{p}^{(r)}]_d$ is called a negative curve of \mathfrak{p} , if (1) $d/r < \sqrt{abc}$, and (2) f is an irreducible polynomial.

If there exists a negative curve of p, then it is uniquely determined.

Theorem (Cutkosky)

(1) If $R_s(\mathfrak{p})$ is Noetherian, then there exists a negative curve of \mathfrak{p} . (2) In the case of ch(K) > 0, $R_s(\mathfrak{p})$ is Noetherian if and only if there exists a negative curve of \mathfrak{p} .

Remark

We have no example where the negative curve of p does not exist.

In the rest, we always assume the following three assumptions:

(Assumption 1) : a, b, c are pairwise coprime positive integers such that $\sqrt{abc} \notin \mathbb{Q}$.

(Assumption 2) : p is not complete intersection (i.e. p is minimally generated by 3 elements).

(Assumption 3) : A minimal generator of \mathfrak{p} is the negative curve of \mathfrak{p} . (\exists negative curve of \mathfrak{p} with r = 1)

S = K[x, y, z] is a graded polynomial ring with deg(x) = a, deg(y) = b, deg(z) = c.

Then, we know

$$\mathfrak{p} = \mathsf{I}_2\begin{pmatrix} x^{s_2} & y^{t_3} & z^{u_1} \\ y^{t_1} & z^{u_2} & x^{s_3} \end{pmatrix} = (x^s - y^{t_1} z^{u_1}, y^t - z^{u_2} x^{s_2}, z^u - x^{s_3} y^{t_3})$$

with positive integers s_2 , s_3 , t_1 , t_3 , u_1 , u_2 such that

 $s = s_2 + s_3$, $t = t_1 + t_3$, $u = u_1 + u_2$, and moreover, we can prove $gcd(s_2, s_3) = gcd(t_1, t_3) = gcd(u_1, u_2) = 1$. Suppose that $z^u - x^{s_3}y^{t_3}$ is a negative curve of p, i.e., $uc < \sqrt{abc}$. We put $\overline{t} = -t/t_3$, $\overline{u} = -u_2/u$, $\overline{s} = s_2/s_3$. Remark that

$$\overline{t} < -1 < \overline{u} < 0 < \overline{s}$$

is satisfied.

The triangle $\Delta_{\overline{t},\overline{u},\overline{s}}$:

Then, the Veronesean subring $S^{(ab)}$ of S = K[x, y, z] is isomorphic to the Ehrhart ring of $\Delta_{\overline{t}, \overline{u}, \overline{s}}$.

We put $Q = (v-1, w-1)K[v^{\pm 1}, w^{\pm 1}].$

In the case of
$$ch(K) = 0$$
, for $n \in \mathbb{N}$ and $g = g(v, w) \in K[v^{\pm 1}, w^{\pm 1}]$,
 $g \in Q^n \iff 0 \leq \forall s + \forall t < n, \ \frac{\partial^{s+t}g}{\partial v^s \partial w^t}(1, 1) = 0.$

Definition (condition H_m)

For $m \in \mathbb{N}$, we say that the condition H_m is satisfied, if

$$\exists g \in [\mathfrak{p}^{(mu)}]_{mab} = \left(\bigoplus_{(\alpha,\beta)\in m\Delta_{\overline{t},\overline{u},\overline{s}}\cap\mathbb{Z}^2} Kv^{\alpha}w^{\beta}\right) \cap Q^{mu} \quad \text{s.t.}$$

" the constant term (or, the coefficient of $v^{mu}w^{-mu_2}$) of $g " \neq 0$.

Theorem (Huneke)

Assume (Assumption 1), (Assumption 2), (Assumption 3). Then, $R_s(\mathfrak{p})$ is Noetherian if and only if $\exists m \in \mathbb{N}$ s.t. H_m is satisfied.

The condition H_m depends on ch(K). $H_m \Longrightarrow H_{2m}, H_{3m}, H_{4m}, \dots$ (In particular, $H_1 \Longrightarrow H_2, H_3, H_4, \dots$).

For i = 1, 2, ..., mu, we put

$$\ell_i = \#\{(\alpha,\beta) \in m\Delta_{\overline{t},\overline{u},\overline{s}} \cap \mathbb{Z}^2 \mid \alpha = i\}.$$

Note that $\ell_{mu} = 1$ and $\ell_i \ge 1$ for all $i = 1, 2, \ldots, mu$.

We sort the sequence $\ell_1, \ell_2, \ldots, \ell_{mu}$ into ascending order

$$\ell'_1 \leq \ell'_2 \leq \cdots \leq \ell'_{mu}.$$

$$\parallel \\ 1$$

Definition (condition EMU_m)

For $m \in \mathbb{N}$, we say that the condition EMU_m is satisfied, if

$$\ell'_i \geq i$$
 for $\forall i = 1, 2, \dots, mu$.

(EMU are the initials of Ebina, Matsuura, Uchisawa)

The condition EMU_m does not depend on ch(K). $\text{EMU}_{m+1} \Longrightarrow \text{EMU}_m$. In the case of ch(K) = 0, $\text{EMU}_m \Longrightarrow H_m$. Assume (Assumption 1), (Assumption 2), (Assumption 3).

Known facts

(1) In the case of ch(K) = p > 0, $R_s(p)$ is Noetherian. (Cutkosky, 1991) For $\mu \gg 0$, $H_{p^{\mu}}$ is satisfied.

Assume ch(K) = 0. (2) If $\exists m \in \mathbb{N}$ s.t. H_m is satisfied, then H_1 is satisfied. (Kurano-Nishida, 2019) (3) Suppose $\ell_1 = 1$ or $\ell_{u-1} = 1$ for $\Delta_{\overline{t},\overline{u},\overline{s}}$ (In this case, EMU₁ is not satisfied. Remark $\ell_{\mu} = 1$ and $u = u_1 + u_2 \ge 2$). Then, $R_s(\mathfrak{p})$ is not Noetherian. (González-Karu, 2016) (4) Suppose $\ell_1 \geq 3$ and $\ell_{u-1} \geq 3$ for $\Delta_{\overline{t} \, \overline{u} \, \overline{s}}$. Then, EMU_m is satisfied for $\forall m \in \mathbb{N}$ (Therefore, $R_{s}(\mathfrak{p})$ is Noetherian). (5) Suppose $\ell_{n-1} = n \ge 3$, $\ell_1 = 2$, $\ell_2 = 3$, ..., $\ell_{n-1} = n$ and n-1 < u-1 for $\Delta_{\overline{t},\overline{u},\overline{s}}$ (In this case, EMU₁ is not satisfied). Then, $R_{s}(\mathfrak{p})$ is not Noetherian. (González-Karu, 2016)

Main theorem (arXiv:2204.01889, Theorem 1.2)

Assume (Assumption 1), (Assumption 2), (Assumption 3) and ch(K) = 0. Then, $R_s(p)$ is Noetherian if and only if EMU₁ is satisfied.

1st step of proof

Suppose that $z^u - x^{s_3}y^{t_3}$ is a negative curve of \mathfrak{p} . We classify $\Delta_{\overline{t},\overline{u},\overline{s}}$ for which EMU₁ is not satisfied.

$$\begin{split} \mathsf{EMU}_1 \text{ is not satisfied} & \Longleftrightarrow \quad 1 \leqq \exists k < u \quad \text{s.t.} \\ \ell'_1 = 1, \, \ell'_2 = 2, \, \dots, \, \ell'_{k-1} = k-1 \text{ and } \ell'_k = \ell'_{k+1} = k. \\ & (k \text{ is called the minimal degree of } \Delta_{\overline{t}, \overline{u}, \overline{s}}) \end{split}$$

We may assume $\ell_1 \ge \ell_{u-1}$ by exchanging x for y if necessary. We put

$$\mathcal{F} := \{\Delta_{\overline{t},\overline{u},\overline{s}} \mid \ell_1 \geqq 3, \, \ell_{u-1} = 2, \, \mathsf{EMU}_1 \text{ is not satisfied} \}$$

and

$$F_{n,\lambda} := \{\Delta_{\overline{t},\overline{u},\overline{s}} \in F \mid \ell_1 = n, \text{ min.deg.} = f_{\lambda} + f_{\lambda+1}\}$$

where $f_{-1} = 0$, $f_0 = 1$, $f_{\lambda+2} = (n-1)f_{\lambda+1} - f_{\lambda}$. Then, $F = \coprod_{n \ge 3, \lambda \ge 0} F_{n,\lambda}$ holds.

2nd step

We prove

$$\forall n \geq 3, \quad \forall \lambda \geq 0, \quad \exists \Delta_{\overline{t}, \overline{u}, \overline{s}} \in F_{n, \lambda} \quad \text{s.t.} \quad R_s(\mathfrak{p}) \text{ is not Noetherian.}$$

3rd step

We prove

$$\forall n \geqq 3, \quad \forall \lambda \geqq 0, \quad \forall \Delta_{\overline{t}, \overline{u}, \overline{s}} \in \mathcal{F}_{n, \lambda}, \quad \mathcal{R}_{s}(\mathfrak{p}) \text{ is not Noetherian.}$$