On finite generation of symbolic Rees rings

Taro Inagawa and Kazuhiko Kurano

Meiji University
Monday, November 14th, 2022
The 43rd Symposium on Commutative Algebra

Let A be a commutative ring and \mathfrak{p} a prime ideal of A.

Definition (n-th symbolic power)

For any positive integer n, we put

$$
\mathfrak{p}^{(n)}:=\mathfrak{p}^{n} A_{\mathfrak{p}} \cap A
$$

and call it the n-th symbolic power of \mathfrak{p}.

Definition (symbolic Rees ring)

We put

$$
R_{s}(\mathfrak{p}):=A\left[\mathfrak{p} t, \mathfrak{p}^{(2)} t^{2}, \mathfrak{p}^{(3)} t^{3}, \ldots\right] \subset A[t]
$$

and call it the symbolic Rees ring of A with respect to \mathfrak{p}.
Finite generation of the symbolic Rees ring is a very interesting and difficult problem.

Let K be a field.

(Assumption 1) : a, b, c are pairwise coprime positive integers such that $\sqrt{a b c} \notin \mathbb{Q}$.

Suppose that $S=K[x, y, z]$ is a graded polynomial ring with $\operatorname{deg}(x)=a, \operatorname{deg}(y)=b, \operatorname{deg}(z)=c$.
Let \mathfrak{p} be the kernel of the K-algebra map $\varphi: S=K[x, y, z] \rightarrow K[T]$ defined by $\varphi(x)=T^{a}, \varphi(y)=T^{b}, \varphi(z)=T^{c}$.
(Assumption 2) : \mathfrak{p} is not complete intersection (i.e. \mathfrak{p} is minimally generated by 3 elements).

Consider the symbolic Rees ring $R_{s}(\mathfrak{p})$.

Problem

Is $R_{s}(\mathfrak{p})$ Noetherian?

Finite generation of $R_{s}(\mathfrak{p})$ depends on a, b, c and $\operatorname{ch}(K)$. There are many examples of finitely generated $R_{s}(\mathfrak{p})$.

Goto-Nishida-Watanabe (1994) : In the case of $\operatorname{ch}(K)=0$, there are some examples of infinitely generated $R_{s}(\mathfrak{p})$.

Remark

In the case of $\operatorname{ch}(K)>0$, we have no example of infinitely generated $R_{s}(\mathfrak{p})$.

Finite generation of $R_{s}(\mathfrak{p})$ is closely related to existence of the negative curve.

Definition (negative curve)

$f \in\left[\mathfrak{p}^{(r)}\right]_{d}$ is called a negative curve of \mathfrak{p}, if
(1) $d / r<\sqrt{a b c}$, and
(2) f is an irreducible polynomial.

If there exists a negative curve of \mathfrak{p}, then it is uniquely determined.

Theorem (Cutkosky)

(1) If $R_{s}(\mathfrak{p})$ is Noetherian, then there exists a negative curve of \mathfrak{p}. (2) In the case of $\operatorname{ch}(K)>0, R_{s}(\mathfrak{p})$ is Noetherian if and only if there exists a negative curve of \mathfrak{p}.

Remark

We have no example where the negative curve of \mathfrak{p} does not exist.

In the rest, we always assume the following three assumptions:
(Assumption 1) : a, b, c are pairwise coprime positive integers such that $\sqrt{a b c} \notin \mathbb{Q}$.
(Assumption 2) : \mathfrak{p} is not complete intersection (i.e. \mathfrak{p} is minimally generated by 3 elements).
(Assumption 3) : A minimal generator of \mathfrak{p} is the negative curve of \mathfrak{p}. (\exists negative curve of \mathfrak{p} with $r=1$)
$S=K[x, y, z]$ is a graded polynomial ring with $\operatorname{deg}(x)=a, \operatorname{deg}(y)=b, \operatorname{deg}(z)=c$.

Then, we know

$$
\mathfrak{p}=I_{2}\left(\begin{array}{lll}
x^{s_{2}} & y^{t_{3}} & z^{u_{1}} \\
y^{t_{1}} & z^{u_{2}} & x^{s_{3}}
\end{array}\right)=\left(x^{s}-y^{t_{1}} z^{u_{1}}, y^{t}-z^{u_{2}} x^{s_{2}}, z^{u}-x^{s_{3}} y^{t_{3}}\right)
$$

with positive integers $s_{2}, s_{3}, t_{1}, t_{3}, u_{1}, u_{2}$ such that $s=s_{2}+s_{3}, t=t_{1}+t_{3}, u=u_{1}+u_{2}$, and moreover, we can prove $\operatorname{gcd}\left(s_{2}, s_{3}\right)=\operatorname{gcd}\left(t_{1}, t_{3}\right)=\operatorname{gcd}\left(u_{1}, u_{2}\right)=1$.
Suppose that $z^{u}-x^{s_{3}} y^{t_{3}}$ is a negative curve of \mathfrak{p}, i.e., $u c<\sqrt{a b c}$. We put $\bar{t}=-t / t_{3}, \bar{u}=-u_{2} / u, \bar{s}=s_{2} / s_{3}$. Remark that

$$
\bar{t}<-1<\bar{u}<0<\bar{s}
$$

is satisfied.

The triangle $\Delta_{\bar{t}, \bar{U}, \bar{s}}$:

Then, the Veronesean subring $S^{(a b)}$ of $S=K[x, y, z]$ is isomorphic to the Ehrhart ring of $\Delta_{\bar{t}, \bar{u}, \bar{s}}$.

We put $Q=(v-1, w-1) K\left[v^{ \pm 1}, w^{ \pm 1}\right]$.

$$
\begin{array}{ccc}
S_{m a b}= & \bigoplus_{(\alpha, \beta) \in m \Delta_{t, \overline{T, j},} \cap \mathbb{Z}^{2}} K v^{\alpha} w^{\beta} \quad \subset\left[v^{ \pm 1}, w^{ \pm 1}\right] \\
U & \cup \\
{\left[\mathfrak{p}^{(r)}\right]_{m a b}=} & \left(\bigoplus_{(\alpha, \beta) \in m \Delta_{t, \bar{t}, \bar{s}} \cap \mathbb{Z}^{2}} K v^{\alpha} w^{\beta}\right) \cap Q^{r}
\end{array}
$$

In the case of $\operatorname{ch}(K)=0$, for $n \in \mathbb{N}$ and $g=g(v, w) \in K\left[v^{ \pm 1}, w^{ \pm 1}\right]$,
$g \in Q^{n} \Longleftrightarrow 0 \leqq \forall s+\forall t<n, \frac{\partial^{s+t} g}{\partial \nu^{s} \partial w^{t}}(1,1)=0$.

Definition (condition H_{m})

For $m \in \mathbb{N}$, we say that the condition H_{m} is satisfied, if

$$
\exists g \in\left[\mathfrak{p}^{(m u)}\right]_{m a b}=\left(\bigoplus_{(\alpha, \beta) \in m \Delta_{\bar{t}, \bar{u}, \bar{s}} \cap \mathbb{Z}^{2}} K v^{\alpha} w^{\beta}\right) \cap Q^{m u} \quad \text { s.t. }
$$

" the constant term (or, the coefficient of $v^{m u} w^{-m u_{2}}$) of $g " \neq 0$.

Theorem (Huneke)

Assume (Assumption 1), (Assumption 2), (Assumption 3). Then, $R_{s}(\mathfrak{p})$ is Noetherian if and only if $\exists m \in \mathbb{N}$ s.t. H_{m} is satisfied.

The condition H_{m} depends on $\mathrm{ch}(K)$. $\mathrm{H}_{m} \Longrightarrow \mathrm{H}_{2 m}, \mathrm{H}_{3 m}, \mathrm{H}_{4 m}, \ldots$ (In particular, $\mathrm{H}_{1} \Longrightarrow \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \ldots$).

The triangle $m \Delta_{\bar{t}, \bar{U}, \bar{s}}$:

For $i=1,2, \ldots, m u$, we put

$$
\ell_{i}=\#\left\{(\alpha, \beta) \in m \Delta_{\bar{t}, \bar{u}, \bar{s}} \cap \mathbb{Z}^{2} \mid \alpha=i\right\}
$$

Note that $\ell_{m u}=1$ and $\ell_{i} \geqq 1$ for all $i=1,2, \ldots, m u$.

We sort the sequence $\ell_{1}, \ell_{2}, \ldots, \ell_{m u}$ into ascending order

$$
\begin{aligned}
& \ell_{1}^{\prime} \leqq \ell_{2}^{\prime} \leqq \cdots \leqq \ell_{m u}^{\prime} . \\
& \| \\
& 1
\end{aligned}
$$

Definition (condition EMU_{m})

For $m \in \mathbb{N}$, we say that the condition $E M U_{m}$ is satisfied, if

$$
\ell_{i}^{\prime} \geqq i \quad \text { for } \quad \forall i=1,2, \ldots, m u
$$

(EMU are the initials of Ebina, Matsuura, Uchisawa)
The condition EMU_{m} does not depend on $\mathrm{ch}(K)$. $\mathrm{EMU}_{m+1} \Longrightarrow \mathrm{EMU}_{m}$. In the case of $\mathrm{ch}(K)=0, \mathrm{EMU}_{m} \Longrightarrow \mathrm{H}_{m}$.

Assume (Assumption 1), (Assumption 2), (Assumption 3).

Known facts

(1) In the case of $\operatorname{ch}(K)=p>0, R_{s}(\mathfrak{p})$ is Noetherian. (Cutkosky, 1991) For $\mu \gg 0, \mathrm{H}_{p^{\mu}}$ is satisfied.

Assume $\mathrm{ch}(K)=0$.
(2) If $\exists m \in \mathbb{N}$ s.t. H_{m} is satisfied, then H_{1} is satisfied.
(Kurano-Nishida, 2019)
(3) Suppose $\ell_{1}=1$ or $\ell_{u-1}=1$ for $\Delta_{\bar{\tau}, \bar{U}, \bar{s}}$ (In this case, EMU_{1} is not satisfied. Remark $\ell_{u}=1$ and $u=u_{1}+u_{2} \geqq 2$). Then, $R_{s}(\mathfrak{p})$ is not Noetherian. (González-Karu, 2016)
(4) Suppose $\ell_{1} \geqq 3$ and $\ell_{u-1} \geqq 3$ for $\Delta_{\bar{t}, \overline{,}, \bar{s}}$. Then, EMU_{m} is satisfied for $\forall m \in \mathbb{N}$ (Therefore, $R_{s}(\mathfrak{p})$ is Noetherian).
(5) Suppose $\ell_{u-1}=n \geqq 3, \ell_{1}=2, \ell_{2}=3, \ldots, \ell_{n-1}=n$ and $n-1<u-1$ for $\Delta_{\bar{t}, \bar{u}, \bar{s}}$ (In this case, EMU_{1} is not satisfied). Then, $R_{s}(\mathfrak{p})$ is not Noetherian. (González-Karu, 2016)

Main theorem (arXiv:2204.01889, Theorem 1.2)

Assume (Assumption 1), (Assumption 2), (Assumption 3) and $\operatorname{ch}(K)=0$.
Then, $R_{s}(\mathfrak{p})$ is Noetherian if and only if EMU_{1} is satisfied.

1st step of proof

Suppose that $z^{u}-x^{5_{3}} y^{t_{3}}$ is a negative curve of \mathfrak{p}. We classify $\Delta_{\bar{\tau}, \bar{U}, \bar{s}}$ for which $E M U_{1}$ is not satisfied.
EMU_{1} is not satisfied $\Longleftrightarrow 1 \leqq \exists k<u$ s.t.

$$
\ell_{1}^{\prime}=1, \ell_{2}^{\prime}=2, \ldots, \ell_{k-1}^{\prime}=k-1 \text { and } \ell_{k}^{\prime}=\ell_{k+1}^{\prime}=k .
$$

(k is called the minimal degree of $\Delta_{\bar{t}, \overline{,}, \bar{s}}$)
We may assume $\ell_{1} \geqq \ell_{u-1}$ by exchanging x for y if necessary. We put

$$
F:=\left\{\Delta_{\bar{t}, \bar{u}, \bar{s}} \mid \ell_{1} \geqq 3, \ell_{u-1}=2, \mathrm{EMU}_{1} \text { is not satisfied }\right\}
$$

and

$$
F_{n, \lambda}:=\left\{\Delta_{\bar{t}, \bar{u}, \bar{s}} \in F \mid \ell_{1}=n, \text { min.deg. }=f_{\lambda}+f_{\lambda+1}\right\}
$$

where $f_{-1}=0, f_{0}=1, f_{\lambda+2}=(n-1) f_{\lambda+1}-f_{\lambda}$.
Then, $F=\coprod_{n \geqq 3, \lambda \geqq 0} F_{n, \lambda}$ holds.

2nd step

We prove
$\forall n \geqq 3, \quad \forall \lambda \geqq 0, \quad \exists \Delta_{\bar{t}, \bar{u}, \bar{s}} \in F_{n, \lambda}$ s.t. $\quad R_{s}(\mathfrak{p})$ is not Noetherian.

3rd step
 We prove

$$
\forall n \geqq 3, \quad \forall \lambda \geqq 0, \quad \forall \Delta_{\bar{\tau}, \bar{u}, \bar{s}} \in F_{n, \lambda}, \quad R_{s}(\mathfrak{p}) \text { is not Noetherian. }
$$

