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1. Introduction

1. Introduction

Let

@ R a commutative Noetherian ring with (S,) and Q(R) is Gorenstein

@ mod R the category of finitely generated R-modules
For M € modR,

. . def . . .
M is a reflexive R-module <= the natural map M — M** is an isomorphism

<= M, is reflexive for p € SpecR s.t. dimR, =1
and M satisfies (S5)

where (=)* = Homg(—, R) and

M satisfies (S,) &, depthg M, > inf{2,dim R, } for Vp € Spec R.
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1. Introduction

In what follows, let

(R,m) a CM local ring with dim R = 1, Q(R) is Gorenstein, and |R/m| = oo

R C A C Q(R) an intermediate ring s.t. A € modR

@ CM(A) the subcategory of mod A consisting of MCM A-modules

@ Ref(A) the subcategory of mod A consisting of reflexive A-modules

For M € modA,
M is a MCM A-module <& depthAp M, > dim A, for ¥p € Spec A
<= M is a torsion-free A-module.
Then Ref(A) C CM(A) and
Ref(A) = {M € modA |30 —> M — Fy — Fi s.t. F; € modA is free}
={MemodA|30—>M—F — X —=0s.t. Fisfree, X € CM(A)}
= QCM(A).

Note that QCM(A) = CM(A) <= A is a Gorenstein ring.
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1. Introduction

By setting £ = Endg(m) = m : m, we have

Theorem 1.1 (Goto-Matsuoka-Phuong)
QCM(E) = CM(E) <= R is almost Gorenstein and m is stable. ’

Recall that
@ an ideal / of R is stable if /2 = al for Ja € /
@ m is stable <= R has minimal multiplicity

@ R is an almost Gorenstein ring if mK C R, where R C K C Rst. K> Kg.
Let QCM'(R) = {M € QCM(R) | M doesn't have free summands}.
Theorem 1.2 (Kobayashi)
(1) QCM(E) € QCM'(R) C CM(E).
(2) QCM(E) = QCM'(R) <= m is stable.
(3) QCM'(R) = CM(E) <= R is an almost Gorenstein ring.

Naoki Endo, Shiro Goto (Meiji University) Reflexive modules over the rings / : | November 17, 2022 4/16



1. Introduction

Question 1.3
What happens if we take Endg(/)? ’

Another motivation comes from the following.

Theorem 1.4 (Dao-lyama-Takahashi-Vial)

Let (A,m) be an excellent henselian local normal domain with dim A = 2 and
A/wm is algebraically closed. Then

A has a rational singularity <= QCM(A) is of finite type.

A subcategory X of mod A is called of finite type if ¥ = addaM for AM € mod A.
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1. Introduction

Question 1.5
When is QCM(R) of finite type for a one-dimensional ring R? ’

Recall that
@ R is an almost Gorenstein ring < QCM'(R) = CM(E)
e QCM'(R) = {M € QCM(R) | M doesn't have free summands}.

Corollary 1.6 (Kobayashi)

Suppose that R is an almost Gorenstein ring. Then
QCM(R) is of finite type <= CM(E) is of finite type

where E = Endg(m) =2 m : m.

Naoki Endo, Shiro Goto (Meiji University) Reflexive modules over the rings / : | November 17, 2022



2. Main theorem

2. Main theorem

Note that m is a regular reflexive trace ideal, once R is not a DVR. J

For an R-module M, consider the homomorphism
T:M'QrM— R, f@m— f(m) for f € M* and me M
and set trg(M) = Im 7.
We say that / is a trace ideal of R &)= trr(M) for some R-module M

— | =trg(/)
<= R:Il=1:1. (when [is regular)

@ R:m=m:m,if Risnot a DVR. (Goto-Matsuoka-Phoung)
@ M doesn't have free summands <= trg(M) C m. (Lindo)
@ /| = R : Ais a regular reflexive trace ideal of R.

Hence QCM'(R) = {M € QCM(R) | trg(M) C m}.
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An m-primary ideal / of R is called Ulrich, if / is stable and ///? is R/I-free.

For regular ideals in R, we have

Ulrich ideals ———> good ideals <—=> stable trace ideals ——> trace ideals

ﬂ

reflexive ideals

If R is Gorenstein, there are one-to-one correspondences for regular ideals:
(Goto-Isobe-Kumashiro, Goto-Isobe-T)

@ {traceideals} <— {birational module-finite extensions }
@ {good ideals} «— { Gorenstein birational module-finite extensions }
@ {Ulrich ideals } +— { Gorenstein birational extensions A s.t. ug(A) =2}

@ {reflexive trace ideals} <— {reflexive birational module-finite extensions }
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Let / be a regular reflexive trace ideal of R. We set
e A=Endg(/)=1I:1
o QCM(R,!) ={M € QCM(R) | trr(M) C I}.
Choose RC K C Rst. K=Kg. Set S=R[K]and c=R:S.
Theorem 2.1 (Main theorem)
(1) QCM(A) C QCM(R, 1) C CM(A).
(2) QCM(A) = QCM(R, ) <= | is stable.
(3) QCM(R, /) =CM(A) <— IK=1] < I Cc.

Corollary 2.2

QCM(A) = CM(A) <= [ isstable and | C ¢ < A is a Gorenstein ring.

In particular, since QCM(R, ¢) = CM(S), we have
QCM(S) = QCM(R,¢) <= S is a Gorenstein ring.
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For a subcategory X of mod R, we denote by

@ ind X the set of isomorphism classes of indecomposable R-modules in X.

Corollary 2.3
Let R be a Gorenstein local domain with dim R = 1. Then

ind QCM(R)

J indoM(A)U{[R]}
R#AAE€Y

— U ind CM(Endg(/)) U {[R]}
IET, I#R

where
@ ) is the set of birational module-finite extensions A s.t. A € Ref(R)

@ 7T is the set of regular reflexive trace ideals of R.

Question 2.4
QCM(R) is of finite type <= CM(A) is of finite type for some A € )7
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3. When is QCM(R) of finite type?

3. When is QCM(R) of finite type?

Recal RC K C Rst. K=Kg, S=R[K]andc¢=R:S. Then S €Y and
@ R is a Gorenstein ring <= R=K < R=5 < R=c¢

@ R is an almost Gorenstein ring <= K/R = (R/m)¥ <= S/R = (R/m)®
< mCc¢

@ R is an generalized Gorenstein ring if R = ¢, or R # ¢ and K/R is R/c-free.
Theorem 3.1

Suppose R is a generalized Gorenstein ring with minimal multiplicity. Then
|indQCM(R)| = ¢r(R/c) + | ind CM(S)].

Hence, QCM(R) is of finite type <= CM(S) is of finite type.

Corollary 3.2
Suppose ¢(R) = v(R) = 3. Then |indQCM(R)| = ¢r(R/c) + | ind CM(S)|
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3. When is QCM(R) of finite type?

Corollary 3.3

Suppose R is a non-Gorenstein almost Gorenstein ring with minimal multiplicity.
Then | ind QCM(R)| =1 + | ind CM(S)|.

Proposition 3.4
Suppose R is a DVR, R € modR, and mR C R. Then ind QCM(R) = {[R],[R]}.

Example 3.5

Let A be a RLR with n =dim A > 2. Let Xi, X5, ..., X, be a regular sop of A
andset P, =(X;|1<j<n, j#i)for1<i<n Weset R=A/()_, Pi. Then
indQCM(R) = {[R], [R]}.

Example 3.6

Suppose ch R > 0. If R is F-pure, then indQCM(R) = {[R], [R]}, provided R is
a DVR.
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3. When is QCM(R) of finite type?

Note that
@ if R is a generalized Gorenstein ring with minimal multiplicity, then

S = R[K] is a Gorenstein ring.

Corollary 3.7

Let R be the numerical semigroup ring over a field k. Suppose that R is a
generalized Gorenstein ring with minimal multiplicity. Then TFAE.

(1) QQCM(R) is of finite type.
(2) S = k[[H]] is a semigroup ring of H, where H is one of the following forms:

Naoki Endo, Shiro Goto (Meiji University) Reflexive modules over the rings / : | November 17, 2022 13 /16



3. When is QCM(R) of finite type?

Note that if CM(R) is of finite type, then
@ X is a finite set (Goto-Ozeki-Takahashi-Watanabe-Yoshida)
@ R is analytically unramified (Krull, Leuschke-Wiegand)

where Xr denotes the set of Ulrich ideals of R.

Theorem 3.8

If QCM(R) is of finite type, then Xg is finite and R is analytically unramified.

Example 3.9

Let (A,m) be a CM local ring with dim A =1, 3K4, |A/m| = oo. Assume Q(A)
is a Gorenstein ring. We set
R=AxXA.

Then, because |Xr| = co, we have | ind QCM(R)| = oco.
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3. When is QCM(R) of finite type?

We say that R is an Arf ring, if every integrally closed regular ideal is stable.
Theorem 3.10 (cf. Dao, Dao-Lindo, Isobe-Kumashiro)

Suppose R is a local ring. If R is an analytically unramified Arf ring, then
QCM(R) is of finite type. In particular, Xg is finite.

Example 3.11

Let R = k[[t3, t*]]. Then |ind QCM(R)| = |ind CM(R)| < oo, but R is not an
Arf ring.

Example 3.12
Let R = k[[£3,t"]]. Then

| Xr| = |{(t6 — tlo) |0#c€k} <

provided k is finite. However | ind QCM(R)| = oo and R is not an Arf ring.
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3. When is QCM(R) of finite type?

Thank you for your attention.
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