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On the Hilbert coefficients of graded modules over graded rings

Koji Nishida
(Graduate School of Science, Chiba University)

Let R = ⊕n∈N Rn be a Noetherian N-graded ring such that R0 is an Artinian local
ring and R = R0[R1] , where N denotes the set of non-negative integers. Moreover, let
M = ⊕n∈N Mn be a finitely generated N-graded module over R. We set s = dimR M .
Then there exist integers e0(M), e1(M), . . . , es(M) such that

n∑

i=0

ℓR0(Mi ) =
s∑

i=0

(−1)i · ei(M) ·
(
n + s − i

s − i

)

for n ≫ 0 . We call ei(M) the i-th Hilbert coefficient of M . As is well known, if we choose
f1, . . . , fs ∈ R1 so that they form an sop for M , then we have

e0(M) ≤ ℓR(M/(f1, . . . , fs)M )

and the equality holds if and only if M is a Cohen-Macaulay R-module. The purpose of
this talk is to give a generalization of this fact, which is a result on ei(M) for any i > 0 .
We say that a sequence f1, f2, . . . , fr of homogeneous elements of R is an M -filter-regular
sequence if ai ̸∈ P for any integer i with 1 ≤ i ≤ r and any P ∈ AssR M/(f1, . . . , fi−1)M
with R1 ̸⊆ P . The main result can be stated as follows.

Theorem Suppose s > 0 and i is an integer with 0 ≤ i < s . Then if we choose
f1, . . . , fs−i ∈ R1 so that they form an M-filter-regular sequence, we have

dimR M/(f1, . . . , fs−i)M = i

and the following assertions hold.

(1)

{
ei(M) ≤ ei(M/(f1, . . . , fs−i)M) if i is even,

ei(M) ≥ ei(M/(f1, . . . , fs−i)M) if i is odd.

(2) ei(M) = ei(M/(f1, . . . , fs−i)M) if and only if depthR M ≥ s − i .

If r ≤ s and a sequence f1, . . . , fr of elements of R1 is an M -filter-regular sequence, then
it is an ssop for M . In this talk, we consider a sufficient condition for the converse of this
implication to be true.



THE FIRST EULER CHARACTERISTIC AND THE DEPTH OF
ASSOCIATED GRADED RINGS

KAZUHO OZEKI

The homological property of the associated graded ring of an ideal is an important

problem in commutative algebra. In this talk, we explore the structure of the associated

graded ring of m-primary ideals in the case where the first Euler characteristic attains

almost minimal value in a Cohen-Macaulay local ring.

Throughout this talk, let A be a Cohen-Macaulay local ring with maximal ideal m

and d = dimA > 0. For simplicity, we may assume the residue class field A/m is infinite.

Let I be an m-primary ideal in A and let

R = R(I) := A[It] ⊆ A[t] and R′ = R′(I) := A[It, t−1] ⊆ A[t, t−1]

denote, respectively, the Rees algebra and the extended Rees algebra of I. Let

G = G(I) := R′/t−1R′ ∼=
⊕

n≥0

In/In+1

denotes the associated graded ring of I. Let M = mG + G+ be the graded maximal

ideal in G. Let Q = (a1, a2, · · · , ad) ⊆ I be a parameter ideal in A which forms a

reduction of I. Then, we set

χ1(a1t, a2t, . . . , adt;G) := ℓ(G/(a1t, a2t, . . . , adt)G) − e(a1t, a2t, . . . , adt;GM)

and call it the first Euler characteristic of G relative to a1t, a2t, . . . , adt (c.f.[1, 2]), where

ℓ(∗) and e(∗) denote the length and the multiplicity symbol, respectively.

It is well-known that χ1(a1t, a2t, . . . , adt;G) ≥ 0 holds true, and the equality

χ1(a1t, a2t, . . . , adt : G) = 0 holds true if and only if the associated graded ring G

is Cohen-Macaulay. The aim of this talk is to explore the structure of the associ-

ated graded ring G with χ1(a1t, a2t, . . . , adt;G) = 1 and, in particular, we prove that

depthG = d − 1.
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GORENSTEINNESS FOR NORMAL TANGENT CONES OF

GEOMETRIC IDEALS

TOMOHIRO OKUMA，KEI-ICHI WATANABE, KEN-ICHI YOSHIDA

Throughout this talk, let (A,m) be an excellent normal local domain containing an
algebraically closed field. In this case, for any m-primary integrally closed ideal I ⊂ A,
there exist a resolution of singularities X → Spec A and an antinef cycle Z on X such that
I can be represented as follows:

IOX = OX(−Z), I = H0(X, OX(−Z))

Put q(nI) = dimK H1(X, OX(−nZ)) for every integer n ≥ 1. Then the normal reduction
number r̄(I) can be desribed in terms of q(nI) :

r̄(I) = min{r ∈ Z≥0 | In+1 = QIn (n ≥ r)}
= min{n ∈ Z≥0 | q((n − 1)I) = q(nI)}.

An m-primary integrally closed ideal I is called an elliptic ideal (resp. a pg-ideal) if
r̄(I) = 2 (resp. r̄(I) = 1). For such an ideal I ⊂ A, we consider the following geometric
blow-up algebra:

G(I) :=
⊕

n≥0

In/In+1.

We call this algebra the normal tangent cone of I.

It is well-known that G(I) = G(I) is Gorenstein if and only if I is good if A is Gorenstein
and I is a pg-ideal. Moreover, it is known that G(I) is Cohen-Macaulay for any elliptic
ideal I. The main purpose of this talk is to prove the following theorem.

Theorem 1. Suppose that A is Gorenstein and,let I ⊂ A be an elliptic ideal. For any
minimal reduction Q ⊂ I, the following conditions are equivalent:

(1) G(I) is Gorenstein.

(2) Q : I = Q + I2.

(3) ℓA(I2/QI) = ℓA(A/I).
(4) ē2(I) = ℓA(A/I), where ē2(I) is the second normal Hilbert coefficient of I.
(5) KZ = −Z2, where K = KX is the canonical divisor on X.

Put pg(A) := dimK H1(X, OX), the geometric genus of A.

Example 2. Let A be as above.

(1) If r̄(m) ≤ 2, then G(m) is Gorenstein.
(2) If pg(A) ≤ 2, then G(m) is Gorenstein.

(3) Let a ≥ 3 be an integer. If we put A = C[[x, y, z]]/(xa +y2a−1 + z2a−1), then G(m)
is not Gorenstein.
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Homological dimension of tensor products of

modules

Toshinori Kobayashi ∗

Throughout R denotes a commutative Noetherian ring, and all R-modules
are assumed to be finitely generated. In this talk, we explain our result on
homological dimension of a tensor product M ⊗R N of R-modules M and N .
Our project was initiated by the discussions of the first coauthor with Roger
Wiegand concerning the following questions:

Question 1. Let M and N be R-modules. If pdR(M) <∞ and pdR(N) <∞,
then must pdR(M ⊗R N) <∞?

Question 2. If M and N are R-modules such that pdR(M ⊗R N) < ∞, then
must pdR(M) <∞ or pdR(N) <∞?

Wiegand proved:

Theorem 3 (Wiegand [2]). Let R be a local ring. Then the following conditions
are equivalent:

(i) If M is an R-module such that pdR(M) <∞, then pdR(M ⊗R M) <∞.

(ii) depth(R) = 0 or R is regular.

One of our aims is to explain our construction of examples that give a neg-
ative answer to Question 2. On the other hand, we also plan to explain our
observation that Question 2 is true under some conditions. In this direction,
the following is one of our main results:

Theorem 4. Let R be a commutative ring and let M and N be R-modules,
where M is totally reflexive. If pdR(M ⊗R N) < ∞, then M is projective and
pdR(N) <∞.

This is joint work with Olgur Celikbas and Souvik Dey.
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NON-NORMAL EDGE RING SATISFYING (S2)-CONDITION

NAYANA SHIBU DEEPTHI

Let G be a finite simple connected graph on the vertex set V (G) = [d] and let
E(G) = {e1, . . . , en} be the edge set of G. Let us consider, K[t] = K[t1, . . . , td] to
be the polynomial ring in d variables over a field K. For an edge e = {i, j} in E(G),
we define te := titj . The subring of K[t] generated by te1 , . . . , ten is called the edge
ring of G, denoted by K[G]. Let e1, . . . , ed be the canonical unit coordinate vectors
of Rd and for some e = {i, j} ∈ E(G), we define ρ(e) := ei + ej . Let SG be the
affine semigroup generated by ρ(e1), . . . , ρ(en). Then, the edge ring K[G] is the
affine semigroup ring of SG.

The Cohen-Macaulayness of the edge ring K[G] in terms of the corresponding
graph G has been a subject of extensive research. Given that the edge ring K[G]
is an affine semigroup ring, it is known from [2, Theorem 1] that, if K[G] is normal
then K[G] is Cohen-Macaulay.

Note that Serre’s condition (S2) is a necessary condition for K[G] to be Cohen-
Macaulay. Based on these insights, Higashitani and Kimura [1] have provided the
necessary condition for an edge ring to satisfy (S2)-condition.

This talk is based on the preprint [3] and the main theorem in this talk is as
follows:

Theorem. Given integers d and n such that, d ≥ 7 and d + 1 ≤ n ≤ d2−7d+24
2 ,

there exists a finite simple connected graph G with |V (G)| = d and |E(G)| = n such
that, the edge ring K[G] is non-normal and satisfies (S2)-condition.

For that, we introduce the graph Ga,b, whose edge ring K[Ga,b] is non-normal
and further prove that the edge ring K[Ga,b] satisfies (S2)-condition. Then, we focus
on the step wise removal of edges from Ga,b, such that each new graph obtained per
step also satisfies both non-normality and (S2)-condition. Moreover, we prove that
any addition of new edges to the graph Ga,b, either affects the non-normality of the
edge ring or leads to the violation of (S2)-condition. Finally, we provide supporting
evidences for our main theorem and list the conclusions.
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On finite generation of symbolic Rees rings

Taro Inagawa and Kazuhiko Kurano (Meiji University)

In this talk, we describe some necessary and sufficient condition for finite generation of
symbolic Rees rings. Finite generation of the symbolic Rees ring is a very interesting and
difficult problem. Furthermore, this talk is mainly based on Inagawa-Kurano [1].

Let K be a field. Suppose that a, b, c are pairwise coprime positive integers such that√
abc /∈ Q. Let p be the kernel of the K-algebra map φ : P = K[x, y, z] → K[T ] defined

by φ(x) = T a, φ(y) = T b, φ(z) = T c. Assume that p is not complete intersection (i.e. p is
minimally generated by 3 elements). Then, we know

p = (xs − yt1zu1 , yt − zu2xs2 , zu − xs3yt3)

with positive integers s2, s3, t1, t3, u1, u2 such that s = s2 + s3, t = t1 + t3, u = u1 + u2, and
moreover, we can prove gcd(s2, s3) = gcd(t1, t3) = gcd(u1, u2) = 1. We put t = −t/t3, u =
−u2/u, s = s2/s3. Remark t < −1 < u < 0 < s. Here, consider the triangle ∆t,u,s as follows:

-

6

•

•

(0, 0)

(u,−u2)

t

u

s

∆t,u,s

The slopes of edges of this triangle are t, u, s respectively.

Definition. For i = 1, 2, . . . , u, we put

ℓi = #{(α, β) ∈ ∆t,u,s ∩ Z2 | α = i}.

Note that ℓu = 1 and ℓi ≧ 1 for all i = 1, 2, . . . , u. We sort the sequence ℓ1, ℓ2, . . . , ℓu into
ascending order ℓ′1 ≦ ℓ′2 ≦ · · · ≦ ℓ′u.

We say that the condition EMU is satisfied for (a, b, c) if ℓ′i ≧ i for all i = 1, 2, . . . , u.

We put p(n) = pnPp ∩ P , and call it the nth symbolic power of p. Consider the symbolic
Rees ring Rs(p) := P [pt, p(2)t2, p(3)t3, . . . ] ⊂ P [t].

Theorem. Let a, b, c be pairwise coprime positive integers such that
√
abc /∈ Q. Let K be a

field of characteristic 0. Assume that p is not complete intersection. Suppose that zu − xs3yt3

is a negative curve, i.e.,
√
abc > uc.

Then, Rs(p) is Noetherian if and only if the condition EMU is satisfied for (a, b, c).
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STANLEY–REISNER RINGS WITH LOW CODIMENSION

NAOKI TERAI (OKAYAMA UNIVERSITY)

This is based on a joint work with M. R. Pournaki, M. Poursoltani, and S. Yassemi.
Let ∆ be a (d − 1)-dimensional simplicial complex on the vertex set [n]. Let S

be a polynomial ring over a field k and I∆ be the Stanley-Reisner ideal of ∆ and
k[∆] = S/I∆ the Stnaley-Reisner ring of ∆.

A local cohomology is one of the most important tool in commutative ring theory.
But in general it is not finitely generated. Then sometimes its dual is considered.
In this article we focus on the dimension of the dual modules of local cohomology
modules Kj

k[∆] = Homk(H
j
m(k[∆]), k) for 0 ≤ j ≤ d − 1. Set di = dimKj

k[∆] for

0 ≤ j ≤ d − 1 and we call (d0, d1, . . . , dd) the Kk[∆]-vector. This vector is important
since it contains the information on (Sr) and CMt property and the depth of the
Stanley–Reisner ring k[∆].

Proposition 0.1. Let ∆ be a (d − 1)-dimensional pure simplicial complex such that
I∆ is of height h ≥ 2 and let (d0, d1, . . . , dd−1, dd) be the Kk[∆]-vector. If i ≤ d−h+1,
then

di + 1 ≤ max
{
di+1 − 1, . . . , di+h−1 − (h − 1)

}
.

Definition 0.2. Let ∆ be a (d − 1)-dimensional pure simplicial complex. Then for
d ≥ r ≥ 2, the Sr-depth of k[∆], denoted by Sr-depth k[∆], is defined to be

min
{
j | dimKj

k[∆] ≥ j − r + 1
}
.

Definition 0.3. Let ∆ be a (d − 1)-dimensional pure simplicial complex. Then for
0 ≤ t ≤ d − 1, the CMt-depth of k[∆], denoted by CMt-depth k[∆], is defined to be

min{j | dimKj
k[∆] ≥ t}.

Theorem 0.4. Let ∆ be a (d− 1)-dimensional pure simplicial complex on the vertex
set [n] such that I∆ is of height h and 1 ≤ p ≤ d. Then

(1) If Kj
k[∆] = 0 for p − h + 1 ≤ j ≤ p − 1, then depthk[∆] ≥ p.

(2) Let r ≥ 2 be an integer. If dimKj
k[∆] ≤ j − r for p − h + 1 ≤ j ≤ p − 1, then

Srdepthk[∆] ≥ p.
(3) Let t ≥ 0 be an integer. If dimKj

k[∆] ≤ t − 1 for p − h + 1 ≤ j ≤ p − 1, then

CMtdepthk[∆] ≥ p.

Corollary 0.5. Let ∆ be a (d− 1)-dimensional pure simplicial complex on the vertex
set [n] such that I∆ is of height 2 and 1 ≤ p ≤ d. Then

(1) If Kp−1
k[∆] = 0, then depthk[∆] ≥ p.

1



2 TERAI

(2) If Kd−1
k[∆] = 0, then k[∆] is Cohen-Macaulay.

In [4] a (d−1)-dimensional non-Cohen-Macaulay Buchsbaum (or equivalently (Sd−1))
complex with codimension two is characterized as the Alexander dual of (d+ 2)-gon.

In this article we classify (Sd−2), (Sd−3) comlexes with codimension two. Using these
classifications we compute two invariants: the h-vector of k[∆] and the arithmetical
rank of I∆.

We give a complete characteriazation for d-dimensional Stanley-Reisner rings with
Serre condition (Sd−1), (Sd−2) (Sd−3) of codimension two. Further we give a negative
answer for the following question:

Question 0.6. [1, Question 2.6] Let d and r be integers with d ≥ r ≥ 2 and let
h = (h0, h1, . . . , hd) be the h-vector of a simplicial complex in such a way that the
following conditions hold:

(1) (h0, h1, . . . , hr) is an M -vector, and

(2)
(
i
i

)
hr+

(
i+1
i

)
hr+1+· · ·+

(
i+d−r

i

)
hd is nonnegative for every i with 0 ≤ i ≤ r ≤ d.

Does there exist a (d − 1)-dimensional (Sr) simplicial complex ∆ with h(∆) = h?

The arithmetical rank of an ideal I, denoted by araI, is defined by the minimal
number r of elements a1, . . . , ar ∈ S such that√

(a1, . . . , ar) =
√
I.

For a squarefree monomial ideal I Lyubeznik [3] proved that

(1) pdS/I ≤ araI,

where pdS/I denotes the projective dimension of S/I. Under what condition does
the equality araI = pdS/I hold? Kimura [2] showed that the equlity holds for the
case that the Cohen-Macaulay Stanley-Reisner ideals of height two. How about non-
Cohen-Maculay ideals of height two? We show the following result:

Theorem 0.7. Let ∆ be a (d − 1)-dimensional pure non-Cohen-Macaulay simplicial
complex on the vertex set [n] such that I∆ is of height two and n ≥ 7. If ∆ is (Sd−3),
then araI∆ = pdk[∆] = 3.
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Levelness versus Nearly Gorensteinness of
homogeneous domains

Sora Miyashita (Osaka University)*

Let R be a homogeneous ring with a unique graded maximal ideal m. We will
always assume that R is Cohen-Macaulay and admits a canonical module ωR.

Definition 1. For a graded R-module M , let trR(M) be the sum of the ideals ϕ(M)
with ϕ ∈ HomR(M,R). Thus,

trR(M) =
∑

ϕ∈HomR(M,R)

ϕ(M).

When there is no risk of confusion about the ring we simply write tr(M).

Definition 2 (see [2, Definition 2.2]). R is nearly Gorenstein if tr(ωR) ⊇ m. In
particular, R is nearly Gorenstein but not Gorenstein if and only if tr(ωR) = m (see
[2, Lemma 2.1]).

Definition 3 (see [3, Chapter III, Proposition 3.2]). R is level if all the degrees of the
minimal generators of ωR are the same.

The following result is the main theorem of this talk.

Theorem 4. (1) Nearly Gorensteinness does not necessarily imply the levelness of
homogeneous domains.

(2) Nearly Gorensteinness necessarily imply levelness of affine semigroup rings
whose projective dimension and Cohen-Macaulay type are 2.

We also discuss Stanley-Reisner rings of low-dimensional simplicial complexes.

Theorem 5. (a) Every 0-dimensional simplicial complex is nearly Gorenstein and
level.
(b) Let ∆ be a 1-dimensional connected simplicial complex. The following conditions
are equivalent.
(1) ∆ is nearly Gorenstein;
(2) ∆ is Gorenstein on the punctured spectrum Spec(R) \ {m};
(3) ∆ is locally Gorenstein (i.e., k[link∆({i})] is Gorentein for all vertex i);
(4) ∆ is a path or a cycle.
(c) Every 1-dimensional nearly Gorenstein simplicial complex is level.
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CONIC DIVISORIAL IDEALS OF TORIC RINGS AND APPLICATIONS TO

STABLE SET RINGS

KOJI MATSUSHITA

This talk is based on [2]. Let C ⊂ Rd be a d-dimensional strongly convex rational polyhedral cone.
We define the toric ring of C over a field k by setting

R = k[C ∩ Zd] = k[tα1
1 · · · tαd

d : (α1, · · · , αd) ∈ C ∩ Zd].

Note that R is a d-dimensional Cohen-Macaulay normal domain. Recently, conic divisorial ideals,
which are a certain class of divisorial ideals (rank one reflexive modules) and were introduced in [1],
and their applications are well studied. For example, the endomorphism ring of the direct sum of
some conic modules of R may be a non-commutative crepant resolution (NCCR) of R. In considering
the construction of NCCRs and other applications, it is important to classify conic divisorial ideals of
certain class of toric rings.

In this talk, we introduce an idea to determine a region representing conic classes in the divisor
class group of R and a description of the conic divisorial ideals of stable set rings of perfect graphs.

Let G be a simple graph on the vertex set V (G) = {1, . . . , d} with the edge set E(G). We say that
S ⊂ V (G) is a stable set (resp. a clique) if {v, w} ̸∈ E(G) (resp. {v, w} ∈ E(G)) for any distinct
vertices v, w ∈ S. Note that the empty set and each singleton are regarded as stable sets.

We define the stable set ring of G over k by setting

k[StabG] = k[ (
∏

i∈S ti)t0 : S is a stable set of G].

The stable set ring of G can be described as the toric ring arising from a rational polyhedral cone if G
is perfect. In what follows, we assume that G is a perfect graph with maximal cliques Q0, Q1, . . . , Qn.

For v ∈ V (G) and a multiset L ⊂ {0, 1, . . . , n}, let mL(v) = |{l ∈ L : v ∈ Ql}|. Moreover, for
multisets I, J ⊂ {0, 1, . . . , n}, we set

X+
IJ = {v ∈ V (G) : mIJ(v) > 0} and X−

IJ = {v ∈ V (G) : mIJ(v) < 0},

where mIJ(v) = mI(v) − mJ(v). We define

C(G) =

{
(z1, · · · , zn) ∈ Rn :

− |J | +
∑

v∈X−
IJ

mIJ(v) + 1 ≤
∑

i∈I
zi −

∑

j∈J
zj ≤ |I| +

∑

v∈X+
IJ

mIJ(v) − 1

for multisets I, J ⊂ {0, 1, . . . , n} with |I| = |J | and I ∩ J = ∅
}

,

where we let z0 = 0. Note that an infinite number of inequalities appears in C(G), but in fact, only a
finite number of inequalities are needed, and hence C(G) is a convex polytope.

Theorem. The conic divisorial ideals of k[StabG] one-to-one correspond to the points in C(G) ∩ Zn.

In [2], we construct an NCCR for a special family of stable set rings as an application of this
theorem. If time permits, we will introduce it too.
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REVISITING KRULL’S THEOREM

KAZUFUMI ETO, JUN HORIUCHI, AND KAZUMA SHIMOMOTO

1. Introduction

This talk is based on the joint work with K. Shimomoto and K. Eto [4]. The complete

version of this resarch will be submitted to elsewhere. In this talk, we revisit the Krull’s

theorem. Krull proved the following result in [3]. We reprove this theorem by using

properties of complete integral closedness of valuation rings.

Proposition 1.1 (Krull). We set V be a valuation ring and its field of fractions K.

(1) Suppose that V is one-dimensional ring, then V is completely integrally closed in

K.

(2) Suppose that V has a height-one prime ideal, then the complete integral closure of

V in K is a valuation ring of rank one. If V does not have a height-one prime

ideal, then the complete integral closure of V is K.

As an application, we have the following. See also [1, Proposition 6.2].

Proposition 1.2. We set V be a one-dimensional valuation ring and let t ∈ V be any

element that is neither zero nor a unit. Then the t-adic completion V̂ of V is a valuation

ring of dimension one. In addition, the natural map V → V̂ is injective.
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The canonical module and a Gorenstein criterion of
a local log-regular ring

Shinnosuke Ishiro (Nihon University)

Let R be a commutative ring, let Q be a monoid, and let α : Q → R be a homomorphism of
monoids. Then we call the triple (R, Q, α) a log ring. A log ring (R, Q, α) is local if R is local and
α−1(R×) = Q∗, where Q∗ (resp. R×) is the set of units of Q (resp. R).

A monoid Q is called fine if it is integral and finitely generated. An integral monoid Q is called
saturated if the following condition holds: for any x ∈ Qgp, if nx ∈ Q for some n ≥ 1, then x ∈ Q.

Here we give the definition of local log-regular rings.

Definition 1 Let (R, Q, α) be a local log ring, where R is Noetherian and Q = Q/Q∗ is fine and
saturated. Let Iα be the ideal of R generated by α(Q+), where Q+ is the set of non-units of Q.
Then (R, Q, α) is called a local log-regular ring if it satisfies the following conditions:

1. R/Iα is a regular local ring.

2. dim R = dim R/Iα + dim Q.

A class of local log-regular rings is introduced by Kazuya Kato in the study of logarithmic
geometry ([2]). One of the reasons of an importance of this class is that this has the structure
theorem like Cohen’s structure theorem. From this structure theorem, one can deduce that the
underlying ring R of local log-regular ring (R, Q, α) is isomorphic to the completion of a monoid
algebra over a fields (if R is of equal characteristic) or to some quotient ring of the completion of a
monoid algebra over a complete discrete valuation ring (if R is of mixed characteristic). From the
view of the theorem, we expect that local log-regular rings have similar properties of affine normal
semigroup rings. The following theorem is derived from this perspective.

Theorem 2 ([1]) Let (R, Q, α) be a local log-regular ring where Q ⊂ Nn for some n ≥ 0. Let
x1, . . . , xr be a sequence of elements of R such that x1, . . . , xr is a regular system of parameters on
R/IQ.

1. The ideal ⟨(x1 · · · xr)α(a) | a ∈ relint Q⟩ is the canonical module of R, where relint Q is the
relative interior of Q.

2. R is Gorenstein if and only if there exists an element c ∈ Q such that c + Q = relint Q.

In this talk, we will discuss about this theorem, including a comparison with the results for
semigroup rings.
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An explicit construction of perfectoid almost
Cohen-Macaulay algebras in mixed characteristic

Ryo Ishizuka∗

This talk is based on joint work with Kazuma Shimomoto [IS].
The existence of “well-behaved” non-Noetherian algebras over a Noetherian ring R

of mixed characteristic (0, p) has many applications. Furthermore, how such algebras
exist is also an interesting problem in itself.

However, these algebras, which are often perfectoid (almost) Cohen-Macaulay, have
a complicated structure. In [IS], by using some perfectoid techniques, we construct
perfectoid almost Cohen-Macaulay algebras as follows.

Main Theorem 1. Let (R,m, k) be a complete local domain of mixed characteristic p >
0 with perfect residue field k and let p, x2, . . . , xn be a system of (not necessarily mini-
mal) generators of the maximal ideal m such that p, x2, . . . , xd forms a system of param-
eters of R. Choose compatible systems of p-power roots {p1/pj}j≥0, {x1/pj

2 }j≥0, . . . , {x1/pj

n }j≥0

inside the absolute integral closure R+. Let R̃∞,∞ be the integral closure of

R∞,∞ :=
⋃

j≥0

R[p1/pj , x
1/pj

2 , . . . , x1/pj

n ] (1)

in R∞,∞[1/p] and Let ̂̃
R∞,∞ and R̂∞,∞ be the p-adic completions of R̃∞,∞ and R∞,∞,

respectively. Then there exists a nonzero element g ∈ R̂∞,∞ and a compatible system
of p-power roots {g1/pj}j≥0 ⊆ R̂∞,∞ of g such that the following properties hold:

1. The ring map R̂∞,∞ → ̂̃
R∞,∞ is (p)1/p∞-almost surjective.

2. ̂̃
R∞,∞ is a perfectoid domain that is a subring of R̂+. Moreover, the image of g

under the map R̂∞,∞ → ̂̃
R∞,∞ is a nonzero divisor.

3. ̂̃
R∞,∞ is a (pg)1/p∞-almost Cohen-Macaulay algebra with respect to p, x2, . . . , xd.

4. Moreover, if R is a normal domain, there exists a complete unramified regular
local ring A together with an integral extension A → R̃∞,∞ and a nonzero element
h ∈ A such that A[1/h] → R̃∞,∞[1/h] is a filtered colimit of finite étale A[1/h]-
algebras contained in R̃∞,∞[1/h].

This can be considered as a generalization of what is constructed for regular local
rings as in [Shi16]. In this talk, I will introduce how to prove that the explicitly

constructed ring ̂̃
R∞,∞ is a perfectoid almost Cohen-Macaulay algebra.
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BIG COHEN-MACAULAY TEST IDEALS IN EQUAL
CHARACTERISTIC ZERO VIA ULTRAPRODUCTS

TATSUKI YAMAGUCHI

A (balanced) big Cohen-Macaulay algebra over a Noetherian local ring (R,m) is
an R-algebra B such that every system of parameters is a regular sequence on B.
Recently, using big Cohen-Macaulay algebras, Ma and Schwede [2], [3] introduced the
notion of BCM test ideals as an analogue of test ideals in tight closure theory. In
positive characteristic, Ma-Schwede’s BCM test ideals are the same as the generalized
test ideals. We consider BCM test ideals in equal characteristic zero.

Using ultraproducts, Schoutens [4] gave an explicit construction of a big Cohen-
Macaulay algebra B(R) over a local domain R essentially of finite type over C. Our
main result is stated as follows:

Theorem 1. Let R be a normal local domain essentially of finite type over C. Let ∆
be an effective Q-Weil divisor on SpecR such that KR+∆ is Q-Cartier, where KR is a

canonical divisor on SpecR. Suppose that R̂ and B̂(R) are the m-adic completions of R

and B(R), and ∆̂ is the flat pullback of ∆ by the canonical morphism Spec R̂ → SpecR.
Then we have

τB̂(R)
(R̂, ∆̂) = J (R̂, ∆̂),

where τB̂(R)
(R̂, ∆̂) is the BCM test ideal of (R̂, ∆̂) with respect to B̂(R) and J (R̂, ∆̂)

is the multiplier ideal of (R̂, ∆̂).

As an application of Theorem 1, we show the next result about a behavior of multi-
plier ideals under pure ring extensions, which is a generalization of [5, Corollary 5.30].

Theorem 2. Let R ↪→ S be a pure local homomorphism of normal local domains
essentially of finite type over C. Suppose that R is Q-Gorenstein. Let ∆S be an
effective Q-Weil divisor such that KS + ∆S is Q-Cartier, where KS is a canonical
divisor on SpecS. Let a ⊆ R be a nonzero ideal and t > 0 a positive rational number.
Then we have

J (S,∆S, (aS)t) ∩ R ⊆ J (R, at).

We discuss a question, a variant of [1, Question 2.7] and consider the equivalence
of BCM-rationality and being rational singularities. We also refer to other problems
concerning big Cohen-Macaulay algebras in equal characteristic zero.
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GENERAL HYPERPLANE SECTION OF LOG CANONICAL
THREEFOLDS IN POSITIVE CHARACTERISTIC

KENTA SATO

First, we recall the definition of klt and lc singularities, which plays an important
role in the minimal model program. fs

Definition 1. Let (R,m) be a normal local ring, essentially of finite type over an
algebraically closed field k. Assume that there exists a resolution of singularities f :
Y → X = SpecR such that the exceptional locus is a simple normal crossing divisor.
(This assumption holds if ch(k) = 0 or dimR ⩽ 3.) We say that X has only klt
singularities (resp. lc singularities) if the following two conditions hold:

(1) X is Q-Gorenstein, that is, a canonical divisor KX of X is Q-Cartier.
(2) Every coefficient of the Q-Weil divisor KY/X := KY − f ∗KX is larger than −1

(resp. larger than or equal to −1).

In this abstract, we work with the following setting.

Setting 2. Let X ⊆ PN
k be a normal projective variety over an algebraically closed

field k of positive characteristic. We further assume that dimX = 3.

We discuss the following problem

Problem 3. With notation as in Setting 2, assume that X is klt (resp. lc), that is, the
local ring OX,x is klt (resp. lc) for every point x ∈ X. Then is a general hyperplane
section X∩H klt (resp. lc)? Here, H ⊆ PN

k is a hyperplane which is sufficiently general.

When ch(k) > 5, the klt case of Problem 3 was settled in [ST20].

Fact 4 ([ST20]). With notation as in Setting 2, we further assume that ch(k) > 5. If
X is klt, then so is a general hyperplane section X ∩ H.

In this talk, we consider the lc case.

Theorem 5. With notation as in Setting 2, we further assume that ch(k) > 3. If X
is lc, then so is a general hyperplane section X ∩ H.
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RINGS OF NILPOTENT ELEMENTS FOR DERIVATIONS
IN POLYNOMIAL RINGS

KYOHEI HATTORI AND HIDEO KOJIMA

Let k[x] = k[x1, . . . , xn] be the polynomial ring in n variables over a field k of characteristic

zero and let D be a k-derivation of k[x]. Given b ∈ k[x], D is nilpotent at b if and only if

there exists a positive integer m with Dm(b) = 0. The set of all elements of k[x] at which D

is nilpotent is denoted by Nil(D) (cf. [1, p. 3]). It is clear that Nil(D) is a k-subalgebra of

k[x] and D|Nil(D) is a locally nilpotent k-derivation on Nil(D). Although the notion Nil(D) is

well-known for specialists, only a few results are known. Kuroda [3] gave k-derivations ∆ on

k[x1, x2, x3, x4] such that Nil(∆) is not finitely generated over k. By using the derivations, he

constructed non-locally nilpotent k-derivations on k[x1, x2, x3, x4, x5] with slices whose kernels

are not finitely generated over k.

In this talk, we give Nil(D) for some k-derivations D on k[x]. The results of this talk are as

follows:

Proposition 1. Let D be a k-derivation on k[x] such that tr.deg k Nil(D) ≤ 1. Then there

exists h ∈ Nil(D) such that Nil(D) = k[h].

Theorem 2. Let D be a non-zero k-derivation on the polynomial ring k[x, y] in two variables.

Assume that D(x) and D(y) are monomial and D is none of the following (1)–(4):

(1) ys∂x or xs∂y, where s ∈ Z≥0.

(2) a∂x + bxmyn+1∂y or axm+1yn∂x + b∂y, where m,n ∈ Z≥0 and a, b ∈ k \ {0}.
(3) aym∂x + bxn∂y, where m,n ∈ Z≥0 with mn = 0 and a, b ∈ k \ {0}.
(4) xsyt(nx∂x −my∂y), where m and n are relatively prime positive integers with mt ̸= ns.

Then Nil(D) = Ker(D). If D is the one as in (1) or (3) (resp. (2), (4)), then Nil(D) = k[x, y]

(resp. Nil(D) = k[x] or k[y], Nil(D) = k[xiyj | (i, j) ∈ A], where A := {(i, j) ∈ (Z≥0)
2 | ∃p ∈

Z≥0,∃q ∈ Z>0 s.t. (i, j) + p(s, t) = q(m,n)}).

The kernels of the monomial derivations on k[x1, x2] are determined in [2].
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THE EXISTENCE OF BALANCED NEIGHBORLY POLYNOMIALS

Nguyen Thi Thanh Tam, Hung Vuong University

Joint work with Satoshi Murai

Abstract. Inspired by the definition of balanced neighborly spheres, we define balanced neigh-
borly polynomials and study the existence of these polynomials. The goal of this article is to
construct balanced neighborly polynomials of type (k, k, k, k) over any field K for all k 6= 2, and
show that a balanced neighborly polynomial of type (2, 2, 2, 2) exists if and only if char(K) 6= 2. Be-
sides, we also discuss a relation between balanced neighborly polynomials and balanced neighborly
simplicial spheres.

References

[1] A. Bjorner, P. Frankl, and R. Stanley, The number of faces of balanced Cohen-Macaulay com-
plexes and a generalized Macaulay theorem, Combinatorica, 7(1)(1987), 23–34.

[2] S. Klee, I. Novik, Lower bound theorems and a generalized lower bound conjecture for balanced
simplicial complexes, Mathematika, 62 (2016). 441–477.

[3] R.P. Stanley, Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249 (1979),
139–157.

[4] R.P. Stanley, Combinatorics and Commutative Algebra, Second Edition, Birkhäuser, Boston,
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Gröbner bases of radical Li-Li type ideals

Xin Ren and Kohji Yangawa (Kansai University)

Let S = K[x1, . . . , xn] be a polynomial ring over a field K. For a partition λ of n
and a tableaux T of shape λ, let fT be the Specht polynomial of T . For example,
if T = 4 3 1 7

5 2
6

, then fT = (x4 − x5)(x4 − x6)(x5 − x6)(x3 − x2). The Specht ideal

Iλ is the ideal of S generated by all fT for tableaux T of shape λ. Haiman-Woo
[1] showed that Iλ is always a radical ideal, and gave a universal Gröbner bases.
(This is an unpublished result, and Murai-Ohsugi-Yanagawa [3] gave a quick proof
recently.)

On the other hand, an earlier paper of Li-Li [2] studied a class of ideals which is
more or less related to Specht ideals. In this talk, we define a class of ideals which
generalizes both Specht ideals and radical Li-Li ideals (their ideals are not radical
in general), and give “Murai-Ohsugi-Yanagawa type results” for this class.

Fix a positive integer l. Let λ = (λ1, · · · , λp) be a partition of n + l − 1 with
λ1 ≥ l. Let Tab(l, λ) be the set of tableaux of shape λ whose letter set is the multi-

set {
l-copies︷ ︸︸ ︷

1, . . . , 1, 2, . . . , n}. (For our purpose, to define Tab(l, λ), we may assume that
1’s are located in the left squares of the first row like 1 1 1 1 3 2

4 5 8
6 7

. ) Consider the

ideal Il,λ := (fT | T ∈ Tab(l, λ)) ⊂ S. (Clearly, I1,λ = Iλ). In the sequel, we use a
monomial order with xn > xn−1 > · · · > x1. (Since Il,λ is not symmetric, giving a
universal Gröbner bases is difficult.)

Theorem 1. Il,λ is a radical ideal of codimension λ1 − l + 1. Moreover, { fT | T ∈
Tab(l, µ), µ ⊴ λ } is a Gröbner bases of this ideal, where ⊴ means the dominance
order on partitions of n + l − 1.

Take m with m ≤ n, and let ∆m denote the difference product of x1, . . . , xm. For
T ∈ Tab(l, λ), set fm,T := lcm{fT ,∆m}, and consider the ideal Il,m,λ := (fm,T | T ∈
Tab(l, λ)) ⊂ S.

Theorem 2. (While Il,m,λ is not radical in general) we have
√
Il,m,λ =

∑
µ⊴λ Il,m,µ,

and { fm,T | T ∈ Tab(l, µ), µ ⊴ λ } forms a Gröbner bases of this ideal.
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WHEN ARE THE NATURAL EMBEDDINGS OF

CLASSICAL INVARIANT RINGS PURE?

ANURAG K. SINGH

Abstract: Consider a reductive linear algebraic group G acting linearly on a polynomial
ring S over an infinite field; key examples are the general linear group, the symplectic group, the
orthogonal group, and the special linear group, with the classical representations as in Weyl’s
book: for the general linear group, consider a direct sum of copies of the standard representation
and copies of the dual; in the other cases take copies of the standard representation. The invariant
rings in the respective cases are determinantal rings, rings defined by Pfaffians of alternating
matrices, symmetric determinantal rings, and the Plücker coordinate rings of Grassmannians;
these are the classical invariant rings of the title, with SG ⊆ S being the natural embedding.

Over a field of characteristic zero, a reductive group is linearly reductive, and it follows that
the invariant ring SG is a pure subring of S, equivalently, SG is a direct summand of S as an SG-
module. Over fields of positive characteristic, reductive groups are typically no longer linearly
reductive. We determine, in the positive characteristic case, precisely when the inclusion SG ⊆ S
is pure. This is joint work with Melvin Hochster, Jack Jeffries, and Vaibhav Pandey.



GORENSTEIN INDICES OF INVARIANT RINGS

KOHSUKE SHIBATA

This is joint work with Yosuke Nakamura (Tokyo University). Let k be an al-
gebraically closed field of characteristic zero. For a finite group G ⊂ GLn(k) and
g ∈ G, we define d(G) and age′(g) as follows.

Definition 1. Let n be a positive integer and let G ⊂ GLn(k) be a finite subgroup.
Let d := #G be the order of G, and let ξ ∈ k be a primitive d-th root of unity.

(1) We define a positive integer d(G) by

d(G) := min
{
ℓ ∈ Z>0

∣∣ (det(g))ℓ = 1 holds for any g ∈ G
}
.

(2) Let g ∈ G. Since g has finite order, g is conjugate to a diagonal matrix
diag(ξe1 , . . . , ξen) with 1 ≤ ei ≤ d. Then, we define age′(g) :=

∑n
i=1

ei
d .

The Gorenstein index of a ring R is the order [ωR] in Cl(R). A subgroup of
GLn(k) is small if it contains no pseudo-reflections. Weston in [Wes91] proved that
the Gorenstein index of k[x1, . . . , xn]G coincides with d(G) when G is small.

The minimal log discrepancy is an invariant of singularities defined in birational
geometry. We can see that the minimal log discrepancy of Spec k[x1, . . . , xn]G at the
origin p can be described by age′(g).

Proposition 2. Let n be a positive integer and let G ⊂ GLn(k) be a small finite
subgroup. Let p ∈ Spec k[x1, . . . , xn]G be the origin, i.e. p is the image of the origin
of Spec k[x1, . . . , xn]. Then it follows that

mldp

(
Spec k[x1, . . . , xn]G

)
= min{age′(g) | g ∈ G}.

Shokurov conjectured that the Gorenstein index of a Q-Gorenstein germ can be
bounded in terms of its dimension and minimal log discrepancy.

Conjecture 3 (Shokurov). For any n ∈ Z>0 and a ∈ R≥0, there exists a positive
integer r(n, a) with the following condition.

• If an n-dimensional Q-Gorenstein variety X and a closed point p ∈ X satisfy
mldp(X) = a, then the Cartier index of KX at p is at most r(n, a).

The main results in this talk are the following theorem. We prove that Conjecture
3 for quotient singularities.

Theorem 4. For any n ∈ Z>0 and a ∈ R≥0, there exists a positive integer r(n, a)
with the following condition.

• If a small finite subgroup G ⊂ GLn(k) satisfies min{age′(g) | g ∈ G} = a,
then the Gorenstein index of k[x1, . . . , xn]G is at most r(n, a).
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DEFINING IDEALS OF AFFINE MONOMIAL CURVES IN A4

AND ASSOCIATED PROJECTIVE MONOMIAL CURVES IN P4

KAZUFUMI ETO, NAOYUKI MATSUOKA, TAKAHIRO NUMATA,
AND KEI-ICHI WATANABE

Let n1 < n2 < · · · < ne be positive integers with gcd(n1, n2, . . . , ne) = 1. Let
H = ⟨n1, n2, . . . , ne⟩ be the numerical semigroup generated by n1, n2, . . . , ne, that
is

H =

{
e∑

i=1

λini

∣∣∣∣∣ 0 ≤ λi ∈ Z

}

We define two semigroups from H.

(1) The dual of H : H∗ = ⟨ne − ne−1, ne − ne−2, . . . , ne − n1, ne⟩.
(2) The projective closure of H : H =

〈(
0

ne

)
,
(

n1

ne−n1

)
,
(

n2

ne−n2

)
, . . . ,

(
ne

0

)〉
.

In this talk, we will consider the connection between the structures of k[H],
k[H∗], and k[H] mainly in the case where e = 4.
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TEST ELEMENTS FOR STRETCHEDNESS

IN NUMERICAL SEMIGROUP RINGS

MASATAKE IKUMA

This is a joint work with Naoyuki Matsuoka. Let A be a Noetherian local ring with the maximal
ideal m. J. Sally introduced the notion of stretched local rings as follows:

Definition 1 ([2]). (1) Suppose A is Artinian. We say that A is a stretched Artinian local ring if
µA(m2) ≤ 1.

(2) We say that A is a stretched local ring if there is a parameter ideal Q of A such that Q is a
minimal reduction of m and A/Q is a stretched Artinian local ring.

In this talk, we will explore a problem when a numerical semigroup ring is stretched.
Let n > 0 and a1, a2, . . . , an > 0 be integers such that gcd(a1, a2, . . . , an) = 1. We put

H = ⟨a1, a2, . . . , an⟩ =

{
n∑

i=1

λiai

∣∣∣∣∣ 0 ≤ λi ∈ Z

}

the numerical semigroup ring generated by a1, a2, . . . , an. Let S = k[[X1, X2, . . . , Xn]] and V = k[[t]]
be the formal power series ring over a field k. We consider a ring homomorphism

φH : S → V

defined by φH(Xi) = tai for all 1 ≤ i ≤ n. We put k[[H]] = Im φH and call it the numerical
semigroup ring of H. The defining ideal Ker φH of k[[H]] is denoted by IH .

K. Eto, N. Matsuoka, T. Numata, and K.-i. Watanabe defined the stretchedness for numerical
semigroups in their paper [1] in preparation.

Definition 2 ([1]). We say that H is stretched if k[[H]] is a stretched local ring.

This definition naturally leads us to expect that it is equivalent to k[[H]]/(te) is stretched where
e is the multiplicity of k[[H]]. However, we have the following.

Example 3 ([1]). Let H = ⟨6, 7, 11, 15⟩. Then the multiplicity of k[[H]] is 6 and k[[H]]/(t6 − t7) is
stretched. Since (t6 − t7) is a minimal reduction of the maximal ideal m = (t6, t7, t11, t15) of k[[H]],
k[[H]] is stretched. Hence H is stretched. But it is easy to check that k[[H]]/(t6) is not stretched.

Eto-Matsuoka-Numata-Watanabe stated the following conjecture in [1].

Conjecture 4 ([1]). H is stretched if and only if k[[H]]/(ta1 − ta2) is a stretched Artinian local
ring, here we assume a1 < a2 < a3, . . . , an.

In this talk, we will see this conjecture has an affirmative answer when the defining ideal IH of
k[[H]] is generated by 2-minors of a 2 × n matrix with elements in monomials of X1, X2, . . . , Xn,
namely, after taking a suitable permutation of a1, a2, . . . , an,

IH = I2

(
Xm2

2 Xm3
3 · · · Xmn

n Xm1
1

Xℓ1
1 Xℓ2

2 · · · X
ℓn−1

n−1 Xℓn
n

)

for some positive integers m1,m2, . . . , mn, ℓ1, ℓ2, . . . , ℓn.
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Dimitrov–Haiden–Katzarkov–Kontsevich complexities for singularity categories

Ryo Takahashi

In 2014, Dimitrov, Haiden, Katzarkov and Kontsevich [2] introduced the notions of complexities and
entropies for a triangulated category. In less than a decade since then, a lot of works on these notions
have been done; see [3, 4, 5, 6, 7, 8, 9, 12] for instance. Let us recall the definitions.

Definition 1 (Dimitrov–Haiden–Katzarkov–Kontsevich). Let T be a triangulated category.

(1) Let A,B ∈ T and t ∈ R. We denote by δt(A,B) the infimum of the sums
∑r

i=1 enit, where r
runs through the nonnegative integers, and n1, . . . , nr run through the integers such that there
exists a series

{Bi−1 → Bi → A[ni]⇝ }r
i=1

of exact triangles in T with B0 = 0 and Br containing B as a direct summand. The function

R ∋ t 7→ δt(A,B) ∈ R≥0 ∪ {∞}
is called the (Dimitrov–Haiden–Katzarkov–Kontsevich) complexity of B relative to A.

(2) Let F : T → T be an exact functor and t ∈ R. The entropy ht(F ) of F is defined by

ht(F ) = lim
n→∞

1

n
log δt(G,Fn(G)),

where G is a split generator of T , i.e., G is an object of T whose thick closure coincides with T .

Let R be a commutative noetherian local ring. Let Dsg(R) be the singularity category of R, which is a
triangulated category introduced by Buchweitz [1] and Orlov [10]. In this talk, we explore complexities
for Dsg(R). More specifically, we shall consider the following question.

Question 2. Let G be a split generator of Dsg(R). Then does it hold that

δt(G,X) = 0

for all X ∈ Dsg(R) and t ̸= 0 ?

The contents of this talk will basically come from [11].
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SPECTRA OF DERIVED CATEGORIES OF ALGEBRAIC VARIETIES AND

RECONSTRUCTION

HIROKI MATSUI

For a noetherian scheme X, Dpf(X) is the derived category of perfect complexes on X. In
this talk, we consider the following question.

Question 0.1. Let X and Y be noetherian schemes. If Dpf(X) and Dpf(Y ) are equivalent as
triangulated categories, are X and Y isomorphic?

Balmer ([1]) proved that if the equivalence between Dpf(X) and Dpf(Y ) preserves tensor
products, then X and Y are isomorphic as schemes. Indeed, X is obtained as the Balmer
spectrum of the tensor triangulated category Dpf(X): X ∼= Spec⊗(Dpf(X)). If the equivalence
does not preserve tensor products, then it is known that this question is false in general; see [5].
On the contrary, Bondal, Orlov, and Ballard proves the following result:

Theorem 0.2 ([2, 3]). Let X and Y be Gorenstein projective varieties over a field k. Assume
that X and Y have ample or anti-ample canonical bundles. If Dpf(X) and Dpf(Y ) are k-
equivalent as triangulated categories, then X and Y are isomorphic.

To deal with such a reconstruction, I have introduced the notion of the spectrum of a trian-
gulated category.

Definition 0.3. ([4]) Let T be a triangulated category. We say that a thick subcategory P of
T is prime if the set

{X ⊆ T | X is a thick subcategory and P ⊊ X}
has a unique maximal element.

We define the spectrum Spec△(T ) of T as the set of prime thick subcategories of T together
with a certain topology.

The aim of this talk is to give an alternative and algebraic proof of Theorem 0.2 using spectra
of derived categories. The key ingredient is the following result:

Theorem 0.4 ([4]). Let X be a noetherian scheme and let P be a thick ideal of Dpf(X). Then

Spec△(Dpf(X)) ∩ {thick ideals of Dpf(X)} = Spec⊗(Dpf(X)) ∼= X

holds.
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REFLEXIVE MODULES OVER THE ENDOMORPHISM ALGEBRAS
OF REFLEXIVE TRACE IDEALS

NAOKI ENDO AND SHIRO GOTO

This talk aims at investigating the category of finitely generated reflexive modules
over the endomorphism algebras End(I) ∼= I : I of regular reflexive trace ideals I in
one-dimensional generically Gorenstein Cohen-Macaulay local rings. The main result
generalizes both of the results of S. Goto, N. Matsuoka, and T. T. Phuong ([2, The-
orem 5.1]) and T. Kobayashi ([1, Theorem 1.3]) regarding the Gorensteinness of the
endomorphism algebra of the maximal ideal. We also explore the question of when
the base ring has only finitely many isomorphism classes of indecomposable reflexive
modules. We will show that the finiteness of the isomorphism classes implies the ring
is analytically unramified and has only finitely many Ulrich ideals. As an application,
for example, there are only finitely many Ulrich ideals are contained in Arf local rings
once the normalization is finite and is a local ring.
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REALIZING STABLE CATEGORIES OF COHEN-MACAULAY MODULES

AS CLUSTER CATEGORIES

OSAMU IYAMA

This talk is based on a joint work with Norihiro Hanihara [HI].
Quiver representations and Cohen-Macaulay representations are two of the main subjects in

representation theory of orders. The classical theorems of Gabriel [ASS] and Buchweitz-Greuel-
Schreyer [LW, Yo] assert that the class of representation-finite quivers and that of representation-
finite Gorenstein rings are parametrized by ADE Dynkin diagrams. Moreover, if R is a simple
surface singularity of Dynkin type Q, then the Auslander-Reiten quiver of the derived category
Db(mod kQ) gives a Z-covering of that of the stable category CMR of Cohen-Macaulay R-modules.
A theoretical explanation of this observation is given by a triangle equivalence

CMR ' C1(kQ), (0.1)

where C1(kQ) is the 1-cluster category Db(mod kQ)/τ of kQ (see [AIR, Remark 5.9]).
The main aim of this talk is to establish a general theory to construct triangle equivalences be-

tween stable categories of large class of Gorenstein rings and cluster categories of finite dimensional
algebras.

The category CMR of Cohen-Macaulay modules over a Gorenstein ring R forms a Frobenius
category, and its stable category CMR has a canonical structure of a triangulated category. By
[B], it is triangle equivalent to the singularity category :

CMR ' Dsg(R) := Db(modR)/ perR. (0.2)

It is also classical in Auslander-Reiten theory that, if R is a local isolated singularity of dimension
d, then Dsg(R) is a (d− 1)-Calabi-Yau triangulated category [A].

On the other hand, cluster categories are Calabi-Yau triangulated categories introduced in this
century. The first motivation was to categorify cluster algebras of Fomin-Zelevinsky, and special
objects called cluster tilting objects in a cluster category correspond bijectively with clusters in
the corresponding cluster algebra. Given a finite dimensional algebra A, its n-cluster category
Cn(A) is defined as the triangulated hull of the orbit category perA/νn for the autoequivalence
νn := −⊗L

A DA[−n].
One of the main tools toward our aim is tilting theory on Z-graded singularity categories. For a

Z-graded Gorenstein ringR, we have the Z-graded singularity category DZ
sg(R) := Db(modZR)/ perZR,

which is equivalent to the stable category CMZR of Z-graded Cohen-Macaulay R-modules. Tilting
theory enables us to control derived equivalences of rings. More generally, if an algebraic trian-
gulated category T has a tilting object U , then T is triangle equivalent to the perfect derived
category of EndT (U). For example, for a simple surface singularity R of Dynkin type Q, there
exists a triangle equivalence

DZ
sg(R) ' per kQ,

which is a Z-graded version of (0.1) (see [I, Section 5.1][KST]). Tilting theory of Z-graded
singularity categories is an active subject in various branches of mathematics including repre-
sentation theory, commutative algebra, algebraic geometry and mathematical physics, see e.g.
[AIR, BIY, HIMO, IT, KST] and a survey article [I].

If R is a Z-graded Gorenstein ring with dimension d and Gorenstein parameter p and there
exists a tilting object U ∈ DZ

sg(R) with A := EndDZ
sg(R)(U), then by comparing Serre functors, we
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2 OSAMU IYAMA

have a commutative diagram of equivalences

perA //

' perA/νd−1'

� � // Cd−1(A)

DZ
sg(R) // DZ

sg(R)/(p)
� � // DZ/pZ

sg (R).

Since the right inclusions are natural triangulated hulls, one would naively expect an equivalence

Cd−1(A) ' D
Z/pZ
sg (R) on the triangulated hulls. This is far from being obvious since these triangu-

lated hulls are defined using (a priori) different dg enhancements of both categories and functors.
Therefore this was shown only in some special cases on a case-by-case basis [AIR, KR, KMV].

Our first main result below justifies the naive expectation above in large generality, and also
gives a realization of Dsg(R) at the same time. For simplicity, here we state it in the easiest form.

Theorem 0.1. Let R =
⊕

i≥0Ri be a positively graded Gorenstein isolated singularity of dimen-

sion d ≥ 0 with R0 = k and Gorenstein parameter p 6= 0. Suppose DZ
sg(R) has a tilting object

M . Then A := EndDZ
sg(R)(M) is a finite dimensional Iwanaga-Gorenstein algebra, and there is a

commutative diagram

perA //

' Cd−1(A)'
// C (1/p)

d−1 (A)

'

DZ
sg(R) // DZ/pZ

sg (R) // Dsg(R).

Here the category C
(1/p)
d−1 (A) is the triangulated hull C

(1/p)
d−1 (A) of the orbit category of perA

modulo a p-th root of νd−1.
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COHEN-MACAULAY RINGS OF HEREDITARY REPRESENTATION TYPE

NORIHIRO HANIHARA

Representation type is a classical notion in representation theory of rings, which measures the complexity
of the category one is interested in. We propose to study commutative Cohen-Macaulay rings of “hereditary
representation type”, by which we mean rings whose representation theory is controlled by finite dimensional
hereditary algebras, or in other words, by quiver representations. One can see that Gorenstein rings of finite
representation type are of hereditary representation type, and besides finite representation type, one can regard
hereditary types as being next simple, from the point of view of representation theory of finite dimensional
algebras.

In the talk we would like to present some examples of such rings, by means of tilting theory and cluster
tilting theory.
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Cohen-Macaulay representations over Artin-Schelter Gorenstein algebras
of dimension one

Yuta Kimura

Representation theory of a Cohen-Macaulay ring A becomes a rich theory if we consider maximal
Cohen-Macaulay modules (CM modules for short). We denote by CMA the category of CM modules.
By many results on CMA, such as study of almost split sequences by Auslander-Reiten and Yoshino, the
structure of the category is gradually becoming clearer. If A is Gorenstein, then the situation is much
nicer. In fact, CMA becomes a Frobenius category, so the stable category CMA is a triangulated category,
and this is equivalent to the singularity category of A [1].

Tilting theory is a powerful tool to study triangulated categories. For a triangulated category T with
middle assumptions, we have a triangle equivalence T ≃ Kb(projΛ) for some ring Λ if and only if there
exists a tilting object T ∈ T satisfying EndT (T ) ≃ Λ. Thus by finding a tilting object in the stable
category of CM modules, we can study the category by using derived categories.

To find a tilting object in the stable category, we assume that A is N-graded. We denote by CMZA the
category of Z-graded CM modules. In the case where A has Krull dimension one with middle assumptions,
Buchweitz-Iyama-Yamaura [2] characterized when the stable category CMZA has a tilting object. Namely,
there exists a tilting object if and only if the a-invariant of A is non-negative or A is regular. There is a
result for existence of tilting objects over quotient singularities [3].

In this talk, we study when the stable category admits a tilting object over an Artin-Schelter Gorenstein
algebra (AS Gorenstein for short). AS Gorenstein algebras were introduced as a non-commutative analog
of commutative Gorenstein rings from a context of non-commutative algebraic geometry.

The a-invariant of a commutative local Gorenstein ring is given by a grading of an extension between
the simple module and the ring. Similarly, for an AS Gorenstein algebra A, a-invariants are defined for
each simple modules. We introduce the average a-invariant aA

av ∈ Q. To obtain a tilting object, we restrict

our category to “locally free on the punctured spectrum” CMZ
0A, which is a Frobenius full subcategory

of CMZA.

Theorem 1. Let A =
⊕

i≥0 Ai be a ring-indecomposable AS Gorenstein algebra of dimension one with

the average a-invariant aA
av. Then the triangulated category CMZ

0A admits a tilting object if and only if
aA
av ≥ 0 holds or A has finite global dimension.

One of main examples of AS Gorenstein algebras is Gorenstein R-orders. Let R be a graded commuta-
tive Gorenstein ring. A graded R-algebra A is called Gorenstein R-order if A is a graded CM R-module
and HomR(A,R) ≃ A holds as A-modules. Let R = k[[x]] be the ring of formal power series in one
variable and m the maximal ideal of R. The following matrix shape R-algebras (of sizes 2 and 3) are
typical examples of Gorenstein R-orders

(
R m
ma R

)
,




R ma mb

m−b+c R mc

ma−2b+c ma−b R




for integers a, b, c ≥ 0. In the talk, we see the (average) a-invariants of these Gorenstein orders.
This talk is based on joint work with Osamu Iyama and Kenta Ueyama in progress.
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STABLE EQUIVALENCES BETWEEN THE CATEGORIES OF

SPHERICAL MODULES AND TORSIONFREE MODULES

YUYA OTAKE

Auslander and Bridger [1] introduced the notion of n-spherical modules for each positive integer n: a
finitely generated R-module M is called n-spherical if ExtiR(M,R) = 0 for all 1 ⩽ i ⩽ n − 1 and M has
projective dimension at most n. When this is the case, ExtiR(M,R) = 0 for all i ̸= 0, n. Auslander and
Bridger found various important properties related to n-spherical modules. In this talk, we study the stable
category of n-spherical modules. Moreover, we introduce the notion of n-G-spherical modules by replacing
projective dimension in the definition of n-spherical modules with Gorenstein dimension, and give similar
results for the stable category of n-G-spherical modules. These are related to the category of modules with
high grade and the category of totally reflexive modules.

The notion of n-torsionfree modules was also introduced by Auslander and Bridger [1], and played a
central role in the stable module theory they developed. The structure of n-torsionfree modules has been
well-studied; see [1, 2, 3, 4, 5, 6].

As an application of studies on n-G-spherical modules, we prove that if R is a Gorenstein local ring of
Krull dimension d > 0, then there exists a stable equivalence between the category of (d − 1)-torsionfree
R-modules and the category of d-spherical modules relative to the local cohomology functor.
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ON IDEALS OF INDECOMPOSABLE INTEGRALLY CLOSED MODULES

OVER TWO-DIMENSIONAL REGULAR LOCAL RINGS

FUTOSHI HAYASAKA

Let (R,m) be a two-dimensional regular local ring with infinite residue field. Let M be a
finitely generated torsion-free R-module of rank r, and let F = M∗∗ be the double R-dual of M .
We regard M as a submodule of the R-free module F generated by the columns of a suitable
matrix. The ideal of maximal minors of this matrix is denoted by I(M), and we call it the ideal
of M . The ideal I(M) is independent of a choice of a matrix, and it is an m-primary ideal of
R if M is not free. Let M be the integral closure of M in the sense of Rees [Ree87].

With this notation, Kodiyalam [Kod95] proved the formula I(M) = I(M) which can be
viewed as a generalization of the classical Zariski’s product theorem. In particular, the ideal
I(M) is an integrally closed ideal if M is integrally closed. Moreover, he proved the following:

Theorem 1 (Kodiyalam). For any simple integrally closed m-primary ideal I of R, there exists
an indecomposable integrally closed R-module M of rank r := ord(I) such that I(M) = I.

In particular, there exist indecomposable integrally closed R-modules of arbitrary rank. The
modules obtained by this construction are restricted to modules with the simple ideals. The
following question was raised in [Kod95]: Does there exist indecomposable integrally closed R-
module M of rank at least two such that the ideal I(M) is non-simple?

For monomial ideals, a large class of indecomposable integrally closed modules of arbitrary
rank with non-simple ideals was constructed in [Hay20, Hay22]:

Theorem 2 (H). For any (not necessarily simple) integrally closed m-primary monomial ideal
of order n ≥ 2 satisfying certain conditions, and for any integer r with 2 ≤ r ≤ n, there exists
an indecomposable integrally closed R-module M of rank r such that I(M) = I.

The modules obtained by this construction are restricted to modules with the monomial
ideals. In this talk, we will give a general existence result without this restriction on monomi-
ality. The result is of the following type:

• Integrally closed ideals satisfying certain conditions occur as the ideal of indecomposable
integrally closed modules of rank r.

On the other hands, it is easy to see that the ideal mr is not the ideal for any indecomposable
integrally closed R-modules. This leads to the following problem: Which ideals can arise as the
ideal of an indecomposable integrally closed module?

In this talk, we will also discuss this problem and give some non-existence results. By putting
together these existence and non-existence results, a characterization of ideals that arise as the
ideal of an indecomposable integrally closed module will be given in the special cases of rank
two and three.

This is joint work with Vijay Kodiyalam.
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ASYMPTOTIC BEHAVIOR OF LOCALIZATIONS OF MODULES

KAITO KIMURA

Throughout this abstract, R is a commutative noetherian ring, I is an ideal of R, and M is a finitely
generated R-module. The asymptotic behavior of the quotient modules M/InM of M for large integers
n is one of the most classical subjects in commutative algebra. Among other things, the asymptotic
stability of the associated prime ideals and depths of M/InM has been actively studied. Brodmann [1]
proved that the set of associated prime ideals of M/InM is stable for large n. Kodiyalam [4] showed that
the depth of M/InM attains a stable constant value for all large n when R is local. There are a lot of
studies about this subject; see [2, 5, 6] for instance.

The purpose of this talk is to proceed with the study of the above subject. In particular, we shall
consider the following question.

Question 1. Does there exist an integer k such that depth(M/InM)p = depth(M/IkM)p for all prime
ideals p of R and all integers n ⩾ k?

In this direction, Rotthaus and Şega [6] proved that such an integer k exists if R is excellent, M is
Cohen–Macaulay, and I contains an M -regular element. In this talk, we aim to improve their theorem
by applying the ideas of their proofs. We give a sufficient condition for the depth of the localization of
M/InM at any prime ideal of R to be stable for large integers n that do not depend on the prime ideal.
One of the main results of this talk gives a common generalization of the above mentioned theorems
proved in [4] and [6].

This talk is based on a preprint [3].
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On the Ehrhart ring of the stable set polytope of a
cycle graph

Mitsuhiro Miyazaki (Kyoto University of Education)
e-mail:mmyzk7@gmail.com

We first fix notation. For sets X and Y , we denote by Y X the set of maps from X to
Y . For a finite set X, we identify RX with R#X , the Euclidean space of dimension #X.
For A ⊂ X, we define the characteristic function χA ∈ RX by χA(x) = 1 for x ∈ A and
χA(x) = 0 otherwise. For f ∈ RX and a ∈ R, we define af ∈ RX by (af)(x) = a(f(x)).
Further, for a finite set X, B ⊂ X and ξ ∈ RX , we set ξ+(B) :=

∑
b∈B ξ(b). We define

the empty sum to be 0, i.e., ξ+(∅) = 0.
Let X be a finite set. For a rational convex polytope P in RX and a field K, we

define the Ehrhart ring EK[P] of P over K as follows. Let −∞ be a new element with
−∞ 6∈ X. Set X− := X ∪ {−∞}. Also, let {Tx}x∈X− be a family of indeterminates

indexed by X−. For f ∈ ZX− , we denote the Laurent monomial
∏

x∈X− T
f(x)
x by T f .

Then EK[P] := K[T f | f ∈ ZX− , f(−∞) > 0, 1
f(−∞)

f |X ∈ P]. We set deg Tx = 0 for

x ∈ X and deg T−∞ = 1. Then EK[P] is an N-graded subring of the Laurent polynomial
ring K[T±1x | x ∈ X−].

In this talk, all graphs are finite simple graphs. A stable set S of a graph G = (V,E)
is a subset S of V with no two elements of S are adjacent. The empty set and a set
consisting of one vertex is a stable set by the trivial reason.

Definition 1 The steble set polytope STAB(G) of a graph G = (V,E) is the convex hull
of {χS ∈ RV | S is a stable set}.
Since ∅ and {v} is a stable set for any v ∈ V , we see that dim STAB(G) = #V .

In this talk, we focus our attention to the Ehrhart ring of the stable set polytope of
a cycle graph G = (V,E). A cycle graph is a graph consisting of one cycle. It is known
that EK[STAB(G)] is Gorenstein if and only if the length of the cycle is even or less
than 6. Therefore, we assume in the following that #V = 2` + 1, where ` is an integer
with ` ≥ 3 and set V = {v0, v1, . . . , v2`}, E = {{vi, vj} | i − j ≡ 1 (mod 2` + 1)}. and
R = EK[STAB(G)].

For i with 0 ≤ i ≤ 2`, we set

pi :=
⊕

µ∈ZV− , Tµ∈EK[STAB(G)],

µ(vi)>0 or µ+(V )<`µ(−∞)

KT µ.

Then pi is a prime ideal of R and dimR/pi = `+ 1.

Theorem 2 The non-Gorenstein locus of SpecR is V (
⋂2`
i=0 pi).

Further, we show the following.

Theorem 3 R is almost Gorenstein.

Finally, we show that the conjecture of Hibi and Tsuchiya is true. Let (h0, h1, . . . , hs),
hs 6= 0 be the h-vector of R. Since dimR = 2`+2 and a(R) = −3, we see that s = 2`−1.
Hibi and Tsuchiya conjectured the following.

Conjecture 4 hs−t = ht for 0 ≤ t ≤ 1 and hs−t = ht + (−1)t for 2 ≤ t ≤ `− 1.

Theorem 5 Conjecture 4 is true.


